
APPLICATION NOTE 502

 © EnOcean | www.enocean.com Subject to modifications | Product Marketing | June 2011 | Page 1/ 21

1 Introduction

In systems e.g. gateways, where an external microcontroller is connected to a Dolphin

based product like a TCM300 it might be desirable to be able to program the Dolphin Flash

memory. This for instance can be used to apply program updates providing the new FLASH

image via a backbone to the host micro controller. The host micro controller can than re-

program the Dolphin (target) FLASH memory.

Host uC
Dolphin uC

Target

EnOcean Gateway

Backbone

Figure 1 – System overview

This application note describes the programming hardware interface and the communica-

tion protocol between the host and target microcontroller.

Additionally it describes how to implement the programming functionality on a host using a

Freescale 32bit ColdFire microcontroller (MCF52233 Demo Board) attached to a TCM300

evaluation board (EVA300) as shown in Figure 2.

Host uC
Dolphin uC

Target

Figure 2 - Dolphin programming setup using ColdFire microcontroller

Dolphin In-Circuit programming – Updating Firmware in the field

 © EnOcean | www.enocean.com Subject to modifications | Wolfgang Bihlmayr | June 2011 | Page 2/ 21

APPLICATION NOTE 502

 © EnOcean | www.enocean.com Subject to modifications | Product Marketing | June 2011 | Page 2/ 21

 DOLPHIN IN-CIRCUIT PROGRAMMING –
UPDATING FIRMWARE IN THE FIELD

This documentation and software project can be the basis for own developments and can

also be used to develop programming adapters.

For easier readability and portability the host software was implemented without the use of

an operating system. The focus was put on demonstrating the basic functionality rather

than demonstrating a real e.g. gateway application.

1.1 References

Further details can be found in the following documentation

[1.] DolphinAPI user manual, EO3000I_API.chm, 1.1.0.0

[2.] DolphinStudio manual (containing EOPX documentation), DolphinStudio.chm

[3.] Schematics EVA300-3

[4.] ColdFire M52233 demo Evaluation board schematics

[5.] Intel hex file format (http://de.wikipedia.org/wiki/Intel_HEX)

Useful web sites:

[6.] EnOcean website http://www.enocean.com

[7.] Wikipedia website http://www.wikipedia.org/

[8.] Freescale website http://www.freescale.com

1.2 System overview

Figure 3 shows the interactions of the various components and files used in the develop-

ment flow of the Dolphin module on one side and the flow on the host microcontroller on

the other.

Due to the implementation on the Dolphin (also see Hex to C-source file converter

(EOMC.exe)) there are two hex files generated by the EOPX (eopx.exe) post build tool.

There is the hex file containing the data which is located in the program area and there is a

second hex file containing the data which is located in the configuration area of the Dol-

phin’s Flash memory. The EOPX post build tool performs all the required modifications and

extraction necessary to generate those two hex files based on the hex file generated by the

linker. E.g. is the program size (u8PrgSize) calculated and entered into the configuration

area hex file and the CRC for the BIST (built-in self test) is calculated and entered in to the

program area hex file. Both hex files together contain the complete data to program the

Dolphin Flash memory.

In this application note those two files are converted (see next chapter) into c language

source files which are then statically compiled and linked into the host microcontroller ap-

plication. Like this it is easy to demonstrate the principle of the programming without add-

ing further complexity of handling of the files e.g. over a TCP/IP backbone. This handling

will strongly depend on the application requirements and therefore will be system specific.

http://de.wikipedia.org/wiki/Intel_HEX
http://www.enocean.com/
http://www.wikipedia.org/
http://www.freescale.com/

 © EnOcean | www.enocean.com Subject to modifications | Wolfgang Bihlmayr | June 2011 | Page 3/ 21

APPLICATION NOTE 502

 © EnOcean | www.enocean.com Subject to modifications | Product Marketing | June 2011 | Page 3/ 21

 DOLPHIN IN-CIRCUIT PROGRAMMING –
UPDATING FIRMWARE IN THE FIELD

Software Development Flow HostSoftware Development Flow Target

DolphinStudio

API
Config.files

User
Source Code

API
Library

Keil
Compiler

Keil
Linker

EOPX
PostBuild

Prg Area
(hex file)

Cfg Area
(hex file)

PostBuild.txt

EOMC
Converter

Prg Area
(hex file)

Cfg Area
(hex file)

ProgData
(c file)

Compiler/Linker
Host (e.g. CodeWarrior)

User
Source Code

Host Application

Host uC
Target

Dolphin uC

C
o

n
tr

o
lle

d
 f
ro

m
 K

e
il

ID
E

1.3 Hex to C-source file converter (EOMC.exe)

The EOMC command line tool converts the two hex files generated by Keil (EOPX post

build) into a c language source code file. The program area hex file is simply converted in

an array of bytes u8PrgData[]. For the configuration area the process is a little more com-

plex.

The input file format used is Intel HEX (also see [5.] Intel hex file format

(http://de.wikipedia.org/wiki/Intel_HEX)). The hex file consists of records which contain

amongst others the address and the data located at this address. Like this it is possible to

code single bytes in a block of memory without defining the values of the bytes in-between.

For the configuration area this method is used to only program (modify) specific bytes (e.g.

u8PrgSize) without modifying others (e.g. calibration values).

That’s why the EOMC generates two arrays for the configuration area an u8CfgData[256]

and an u8CfgMask[256] array. The data lists the bytes to program and the mask defines if

a byte needs to be programmed (=0xFF) or not (=0x00).

for(i=0;i<256;i++)

 if(u8CfgMask[i]!=0)

 tCfgArea.raw.bytes[i] = u8CfgData[i]; // modify CFG area

Figure 3 – System interactions

 © EnOcean | www.enocean.com Subject to modifications | Wolfgang Bihlmayr | June 2011 | Page 4/ 21

APPLICATION NOTE 502

 © EnOcean | www.enocean.com Subject to modifications | Product Marketing | June 2011 | Page 4/ 21

 DOLPHIN IN-CIRCUIT PROGRAMMING –
UPDATING FIRMWARE IN THE FIELD

EOMC usage:

Eomc.exe –fprg <prgarea.hex> -fcfg <cfgarea.hex> -fout prgfile

1.4 FLASH memory organization

The Dolphin FLASH is organized in pages of 256 bytes size. A total of 129 pages (32kByte

+ 256byte) of FLASH are available.

The total FLASH memory is split into 3 areas as indicated in Figure 4:

 Program and Data Area

 Information Area (chip specific data)

 Configuration Area (module specific data)

Program & Data Area

Configuration Area
(page 127)

Information Area
(page 128)

page 0

page 1

page 126

0x0000

0x0100

0x00FF

0x01FF

0x9F00

0x7E00

0xA000

0x7EFF

0x9FFF

0xA0FF

The FLASH memory can be programmed on a byte level. Erasing its only possible on a page

level, erasing the whole 256 bytes at once. The erased state of the FLASH is all bits set and

an erased byte reads 0xFF.

1.4.1 Program and Data Area

The FLASH from address 0x0000 to 0x7EFF is used for the program and data information.

The compiled hex file is placed into this memory area. The EOPX post build tool always

aligns the hex file to the 256 page boundary and adds as the last byte a CRC value. This

CRC value is used for the flash BIST (built-in-self-test).

Figure 4 – FLASH areas

 © EnOcean | www.enocean.com Subject to modifications | Wolfgang Bihlmayr | June 2011 | Page 5/ 21

APPLICATION NOTE 502

 © EnOcean | www.enocean.com Subject to modifications | Product Marketing | June 2011 | Page 5/ 21

 DOLPHIN IN-CIRCUIT PROGRAMMING –
UPDATING FIRMWARE IN THE FIELD

For instance if the compiled program size is 256 byte - after the alignment with EOPX post

build - it will consume 512 bytes (2 pages) in the FLASH memory (from 0x0000 - 0x01FF).

The last byte of the downloaded code will be the CRC value (at address 0x01FF) used for

the BIST.

The last page of the program and data area (0x7E00 to 0x7eFF) is intended to be used as

Log Area (see [1.] DolphinAPI user manual, EO3000I_API.chm, 1.1.0.0).

1.4.2 Information Area

The information area contains chip specific data like e.g. the chip id and manufacturing

trace information. The memory page 128 at address 0xA000-0xA0FF is used for this pur-

pose. The information is collected during chip manufacturing and testing and is read-only.

1.4.3 Configuration Area

The configuration area contains module specific data like calibration values. The FLASH

memory page 127 at address 0x9F00-0x9FFF is used for this purpose.

The information in this page is collected partly during module manufacturing and testing

(first 128 bytes) and can also be used for customer specific information (second 128

bytes). The page is read-write and can always be read even if the code protection is set.

Due to the fact that the whole page has to be erased to modify a single byte special care

has to be taken to avoid loosing the module specific data.

This area also contains the program size information (at address 0x9F00) which typically

needs modification after a reprogramming.

Note:

The first 4 bytes from address 0x9F00-0x9F03 require special handling. Erasing of those

bytes is only possible by executing the WR_PRG_AREA (executes mass erase) command.

Programming is only possible using the WR_FLASH_BYTE command.

In programming mode the CFG_AREA is mapped to other memory space as in program

runtime. If you access CFG_AREA in programming mode using WR_FLASH_BYTE,

RD_FLASH_BYTE use the addresses 0x7F00 – 0x7FFF.

Figure 5 – Configuration Area (CFG_AREA)

 © EnOcean | www.enocean.com Subject to modifications | Wolfgang Bihlmayr | June 2011 | Page 6/ 21

APPLICATION NOTE 502

 © EnOcean | www.enocean.com Subject to modifications | Product Marketing | June 2011 | Page 6/ 21

 DOLPHIN IN-CIRCUIT PROGRAMMING –
UPDATING FIRMWARE IN THE FIELD

1.4.4 Code Protection

The program and data area can be protected against readout (e.g. to inhibit reverse engi-

neering) with the code protection. When the code protection is set the program and data

area can't be read with an external programmer.

The only way to reset the code protection is done by erasing the whole program and data

area with the WR_PRG_AREA (executes mass erase) command.

The information area and the configuration area can be always read even if code protection

is set.

The code protection is the second byte in the configuration area at address 0x9F01:

 Code protection set (0x00)

 No code protection set (0x0FF)

To enable the code protection the WR_FLASH_BYTE command (address 0x9F01, data 0x00)

has to be used.

2 Programmer

2.1 Hardware Interface

The programming interface is based around a standard 4 wire SPI (Serial Peripheral Inter-

face) together with three additional control signals. The host acts as SPI master (controlling

the SPI communication and providing the clock) and the target (Dolphin) acts as SPI slave.

The 3 additional (to the 4 SPI) signals are:

 RESET signal to reset the target

 READY signal for synchronisation between host and target

 PMODE signal to enter programming (boot loader) mode.

HOST Dolphin

QSPI_CS0 SCSEDIO0
CS#

QSPI_SCK SCLKDIO1
CLK

QSPI_DO WSDADIO2
MOSI

QSPI_DI RSDADIO3
MISO

PUB[0](UTXD1) ADIO7(READY)
READY

PUB[1](URXD1) PROG_EN
PMODE

PUB[2](UCTS1) RESET
RESET

GND GND

Figure 6 –Programmer Interface Signals

 © EnOcean | www.enocean.com Subject to modifications | Wolfgang Bihlmayr | June 2011 | Page 7/ 21

APPLICATION NOTE 502

 © EnOcean | www.enocean.com Subject to modifications | Product Marketing | June 2011 | Page 7/ 21

 DOLPHIN IN-CIRCUIT PROGRAMMING –
UPDATING FIRMWARE IN THE FIELD

2.2 Programming Algorithm / Flow

Figure 7 depicts the programming flow for the Dolphin module.

First step is to establish the connection between the host and the target. During connect

the Dolphin module is reset and started into boot loader (programming) mode. To verify

the logical connection the RD_SW_VERSION command is executed. If the command rece-

ives a valid answer the connection is established.

Next the information area (optional) and the configuration area are read. The configuration

area is then selectively modified using the u8CfgData[] and u8CfgMask[] arrays (also see

1.3 Hex to C-source file converter (EOMC.exe)).

Connect

Read INF Area

Read CFG Area

Modify CFG Area
PrgData.c

u8CfgData[],
u8CfgMask[]

(Mass Erase)

Write PRG Area

Write CFG Area

PrgData.c
u8PrgData[]

Execute BIST

Verify

CodeProtection?

Set CodeProtection

yes

Disconnect

no

Figure 7 - Programming flow

 © EnOcean | www.enocean.com Subject to modifications | Wolfgang Bihlmayr | June 2011 | Page 8/ 21

APPLICATION NOTE 502

 © EnOcean | www.enocean.com Subject to modifications | Product Marketing | June 2011 | Page 8/ 21

 DOLPHIN IN-CIRCUIT PROGRAMMING –
UPDATING FIRMWARE IN THE FIELD

Then the whole Flash is erased and the program data (using the u8PrgData[] array) is writ-

ten. Both steps are done with the WR_PRG_AREA command.

Afterwards the modified configuration area is written using the WR_FLASH_PAGE and

WR_FLASH_BYTE (for the first 2 bytes) commands.

Then the proper execution of the BIST (built-in-self-test) is verified.

To verify correct programming a byte-by-byte comparison of the configuration area and the

program area is performed.

Note:

The intention of the CRC is to verify FLASH integrity over the life time (in system). The “on-

ly” 8 bit CRC should not be used to ensure that the programming was correctly executed.

Finally after verifying correct programming the code protection (optional) can be set if de-

sired.

During disconnect the Dolphin module is reset into user mode and the programming signals

are turned to inputs (high impedance state).

Note:

The error handling used in this implementation only executes a step if no error has oc-

curred previously. Exception is the Disconnect which is always executed. For further details

please see source code.

2.3 Mode selection

2.3.1 RESET signal

The RESET signal allows the host to reset the Dolphin. In combination with the PMODE sig-

nal it’s possible to enter either boot loader mode (programming) or user mode (application

code running).

Note:

The RESET signal is active high!

2.3.2 PMODE signal (PROGEN)

With the falling edge of the RESET the Dolphin and starts to execute code in the ROM at

address 0x0000. The first instructions poll the state of the PROGEN pin to decide if the boot

loader code (ROM) is executed or the user application code (FLASH) is started.

In case of the boot loader mode the READY signal is used to indicate that the target is

ready to receive SPI transfers (commands). In case of the application code the state of the

READY signal depends on the software (ADIO7).

 © EnOcean | www.enocean.com Subject to modifications | Wolfgang Bihlmayr | June 2011 | Page 9/ 21

APPLICATION NOTE 502

 © EnOcean | www.enocean.com Subject to modifications | Product Marketing | June 2011 | Page 9/ 21

 DOLPHIN IN-CIRCUIT PROGRAMMING –
UPDATING FIRMWARE IN THE FIELD

RESET

PMODE

Mode

READY

TProgenH

Boot loader mode User mode

2.4 Communication protocol

The boot loader communication protocol is based on 32 bit SPI transfers in combination

with a synchronization mechanism using the READY signal.

2.4.1 SPI protocol

The underlying SPI protocol uses a low active chip select (CS#). With each SPI transfer

(CS# low pulse) 4 bytes of data (32 bits) are transferred. Each byte is transferred with the

most significant bit (MSB) B7 first. The SPI clock signal is low when inactive. With the lead-

ing edge (rising edge) of the clock signal the data bits are sampled. With the following edge

(falling edge) of the clock the data bits have to be applied.

CS#

Clock

B7 B6 B5 B4 B3 B2 B1 B0 B7 B6 B5 B4 B3 B2 B1 B0B3 B4
HOST
(MOSI)

DOLPHIN
(MISO)

B7 B6 B5 B4 B3 B2 B1 B0 B7 B6 B5 B4 B3 B2 B1 B0B3 B4

The whole communication is only using half-duplex transfers meaning that data is ex-

changed either only from host to target or vice-versa. The listening communication node

sends idle data (0x00).

2.4.2 READY signal

The READY signal is used by the target to signal when it is ready to receive data. If the

READY signal is low the target is busy and it’s not allowed to send data.

After every SPI transfer there is a certain delay before the READY signal is set low. De-

pending on the commands the READY signal might be low (busy) in a range from 10us up

to 60ms.

Figure 9 – SPI Transfer

Figure 8 – Mode selection

 © EnOcean | www.enocean.com Subject to modifications | Wolfgang Bihlmayr | June 2011 | Page 10/ 21

APPLICATION NOTE 502

 © EnOcean | www.enocean.com Subject to modifications | Product Marketing | June 2011 | Page 10/ 21

 DOLPHIN IN-CIRCUIT PROGRAMMING –
UPDATING FIRMWARE IN THE FIELD

CS#

Clock

Data

READY

TReadyD TBusy

32 bit 32 bit

2.4.3 Timing Characteristics

Parameter Symbol Min. Max. Unit

Max. SPI frequency f_SPI 2 MHz

RESET active (high) time T_RESET 1000 us

READY delay time T_READYD 30 us

PROG_EN hold time T_PROGENH 500 us

Target Busy time (READY low) T_BUSY 10 60000 us

2.5 Command triggered protocol

The communication uses a command triggered approach. Only the host triggers any com-

munications using commands. The Dolphin executes the desired command and receives or

transmits the required data and/or acknowledge. All commands are packed into 8 bytes

requiring 2 (32 bit) SPI transfers.

CS#

Clock

HOST
(MOSI)

DOLPHIN
(MISO)

32 bit 32 bit

32 bit 32 bit

Note:

The host has to monitor the READY signal after every 32 bit SPI transfers (also in-between

the two 32 bit transfers for a command).

Figure 11 – communication protocol (half duplex)

Figure 10 – READY signal

 © EnOcean | www.enocean.com Subject to modifications | Wolfgang Bihlmayr | June 2011 | Page 11/ 21

APPLICATION NOTE 502

 © EnOcean | www.enocean.com Subject to modifications | Product Marketing | June 2011 | Page 11/ 21

 DOLPHIN IN-CIRCUIT PROGRAMMING –
UPDATING FIRMWARE IN THE FIELD

As already mentioned is the communication half-duplex, e.g. the host sends a command

with the first data frame (Dolphin sends idle (0x00)). Than the host basically only provides

the clock (host sends idle (0x00)) to request a response data frame.

2.5.1 Commands

The commands are embedded in a header of three fixed byte, the actual command identifi-

er byte, three byte of optional additional parameters and a checksum byte resulting in a

total length of 8 byte.

Note: n/d means bytes are not defined an can have any values

The following features are provided:

 Read boot loader software version

 Read FLASH (1 byte, 1 page, program area)

 Write FLASH (1 byte, 1 page, program area)

 Erase FLASH (1 page, Mass erase) -> see Write FLASH commands

 Blank test (verify that erased)

 BIST (verify BIST setting)

 Write to XRAM and execute (for testing)

Command Byte0 Byte1 Byte2 Byte3

(CMD)

Byte4 Byte5 Byte6 Byte7

RD_SW_VERSION

0xA5 0x5A 0xA5

0x4B 0x00 0x00 0x00

checksum

INF_SW_VERSION 0x8C SW1 SW2 SW3

RD_FLASH_BYTE 0x6B AddHi AddLo 0x00

WR_FLASH_BYTE 0x6C AddHi AddLo Data

RD_FLASH_PAGE 0x69 PageIdx 0x00 0x00

WR_FLASH_PAGE 0x6A PageIdx EraseOnly 0x00

RD_PRG_AREA 0x6D PageCnt 0x00 0x00

WR_PRG_AREA 0x6E PageCnt EraseOnly 0x00

INF_OK 0x58 Code n/d n/d

INF_ERROR 0x99 ECode n/d n/d

WR_BLANK_CHK 0x70 0x00 0x00 0x00

WR_BIST 0x71 0x00 0x00 0x00

WR_PRG_XRAM 0x6F PageCnt 0x00 0x00

Table 1 – Command list

 © EnOcean | www.enocean.com Subject to modifications | Wolfgang Bihlmayr | June 2011 | Page 12/ 21

APPLICATION NOTE 502

 © EnOcean | www.enocean.com Subject to modifications | Product Marketing | June 2011 | Page 12/ 21

 DOLPHIN IN-CIRCUIT PROGRAMMING –
UPDATING FIRMWARE IN THE FIELD

2.5.2 Checksum

The checksum is the sum (modulo 256) over the Byte2 to Byte6, e.g.

uint8 u8checksum;

for (i=2; i<7; i++)

 u8checksum += u8Byte[i];

2.5.3 RD_SW_VERSION

The RD_SW_VERSION command is used to retrieve the boot loader software version. The

target responds with the INF_SW_VERSION. This command is used after entering boot

loader mode to ensure proper mode selection.

Command Byte0 Byte1 Byte2 CMD Byte4 Byte5 Byte6 Byte7

RD_SW_VERSION 0xA5 0x5A 0xA5 0x4B 0x00 0x00 0x00 checksum

HOST
(MOSI)

DOLPHIN
(MISO)

RD_SW_VERSION

INF_SW_VERSION

2.5.4 INF_SW_VERSION

The INF_SW_VERSION sends the boot loader software version to the host.

Command Byte0 Byte1 Byte2 CMD Byte4 Byte5 Byte6 Byte7

INF_SW_VERSION 0xA5 0x5A 0xA5 0x8C SW1 SW2 SW3 checksum

Parameters:

SW1 Main version number

SW2 Beta version number

SW3 Alpha version number

2.5.5 RD_FLASH_BYTE

The RD_FLASH_BYTE command reads one byte of FLASH specified by the AddHi, AddLo

parameters. The target acknowledges with an INF_OK containing the requested data in the

Code field.

Command Byte0 Byte1 Byte2 CMD Byte4 Byte5 Byte6 Byte7

RD_FLASH_BYTE 0xA5 0x5A 0xA5 0x6B AddHi AddLo 0x00 checksum

Figure 12 – Command RD_SW_VERSION

 © EnOcean | www.enocean.com Subject to modifications | Wolfgang Bihlmayr | June 2011 | Page 13/ 21

APPLICATION NOTE 502

 © EnOcean | www.enocean.com Subject to modifications | Product Marketing | June 2011 | Page 13/ 21

 DOLPHIN IN-CIRCUIT PROGRAMMING –
UPDATING FIRMWARE IN THE FIELD

HOST
(MOSI)

DOLPHIN
(MISO)

RD_FLASH_BYTE

INF_OK (Data)

Parameters:

AddHi High-Byte of the address to read

AddLo Low-Byte of the address to read

Note:

 In programming mode the CFG_AREA is mapped to other memory space as in program

runtime. Use the addresses 0x7F00 – 0x7FFF.

 If the address is in the program area and the code protect is set then an INF_ERROR

(ECode ERR_READONLY) is replied.

 If the address is out of the FLASH memory than an INF_ERROR (ECode

ERR_OUT_OF_MEMORY) is replied.

2.5.6 WR_FLASH_BYTE

The WR_FLASH_BYTE command writes the data byte to the specified memory address. The

target sends an INF_OK response.

Command Byte0 Byte1 Byte2 CMD Byte4 Byte5 Byte6 Byte7

WR_FLASH_BYTE 0xA5 0x5A 0xA5 0x6C AddHi AddLo Data checksum

HOST
(MOSI)

DOLPHIN
(MISO)

WR_FLASH_BYTE

INF_OK

Parameters:

AddHi High-Byte of the address to read

AddLo Low-Byte of the address to read

Data Data byte to write

Note:

 In programming mode the CFG_AREA is mapped to other memory space as in program

runtime. Use the addresses 0x7F00 – 0x7FFF.

 If the address is in the information area an INF_ERROR (ECode ERR_READONLY) is rep-

lied.

Figure 14 – Command WR_FLASH_BYTE

Figure 13 – Command RD_FLASH_BYTE

 © EnOcean | www.enocean.com Subject to modifications | Wolfgang Bihlmayr | June 2011 | Page 14/ 21

APPLICATION NOTE 502

 © EnOcean | www.enocean.com Subject to modifications | Product Marketing | June 2011 | Page 14/ 21

 DOLPHIN IN-CIRCUIT PROGRAMMING –
UPDATING FIRMWARE IN THE FIELD

 If the address is in the program area and the code protection is set an INF_ERROR

(ECode ERR_CODEPROTECTION) is replied.

 If the address is not erased (0xFF) then INF_ERROR (ECode ERR_BYTE_NOT_ERASED) is

replied.

 If the address is out of the FLASH memory than an INF_ERROR (ECode

ERR_OUT_OF_MEMORY) is replied.

2.5.7 RD_FLASH_PAGE

The RD_FLASH_PAGE command reads a page (256 byte) specified by the PageIdx of FLASH

memory. The target first sends an acknowledge INF_OK before it send the 256 bytes of

FLASH content.

Command Byte0 Byte1 Byte2 CMD Byte4 Byte5 Byte6 Byte7

RD_FLASH_PAGE 0xA5 0x5A 0xA5 0x69 PageIdx 0x00 0x00 checksum

HOST
(MOSI)

DOLPHIN
(MISO)

RD_FLASH_PAGE

FLASH_PAGE(256 Byte)INF_OK

Parameters:

PageIdx Index of the page to read (0..128)

Note:

 If the page is in the program area and the code protection is set then an INF_ERROR

(ECode ERR_READONLY) is replied.

 If the PageIdx is out of the range an INF_ERROR (ECode ERR_OUT_OF_MEMORY) is rep-

lied.

2.5.8 WR_FLASH_PAGE

The WR_FLASH_PAGE command writes one page (256 byte) to the specified page of FLASH

memory. It handles the following steps:

 erasing of the page

 blank check of the page

 writing of the 256 bytes of data

First the target responds with an acknowledge INF_OK. Then the host sends the 256 bytes

of data. The target response with an INF_OK.

Command Byte0 Byte1 Byte2 CMD Byte4 Byte5 Byte6 Byte7

WR_FLASH_PAGE 0xA5 0x5A 0xA5 0x6A PageIdx EraseOnly 0x00 checksum

Figure 15 – Command RD_FLASH_PAGE

 © EnOcean | www.enocean.com Subject to modifications | Wolfgang Bihlmayr | June 2011 | Page 15/ 21

APPLICATION NOTE 502

 © EnOcean | www.enocean.com Subject to modifications | Product Marketing | June 2011 | Page 15/ 21

 DOLPHIN IN-CIRCUIT PROGRAMMING –
UPDATING FIRMWARE IN THE FIELD

HOST
(MOSI)

DOLPHIN
(MISO)

WR_FLASH_PAGE FLASH_PAGE(256 Byte)

INF_OK INF_OK

Additionally it’s possible to only erase the page without writing of data. This is done by set-

ting the EraseOnly parameter to 0x01. In this case also no data is transferred.

HOST
(MOSI)

DOLPHIN
(MISO)

WR_FLASH_PAGE

INF_OK

Parameters:

PageIdx Index of the page to write/erase (0..127)

EraseOnly
0x00 erase and write page

0x01 erase page

Note:

 the first four bytes in the configuration area can not be programmed or erased with this

command (remain unchanged)

 If the code protection is set then an INF_ERROR (ECode ERR_READONLY) is replied.

 If the PageIdx 128 (information area) is used an INF_ERROR (ECode ERR_READONLY) is

replied.

 If the PageIdx is >128 an INF_ERROR (ECode ERR_OUT_OF_MEMORY) is replied.

 In case of an error during FLASH program operation an INF_ERROR (ECode

ERR_WRITING_FAILED or ERR_ERASE_FAILED) is replied.

2.5.9 RD_PRG_AREA

Reads the program area starting from address 0x0000 up to the specified number of pages.

The target first sends an acknowledge INF_OK before it sends the PageCnt * 256 byte of

FLASH content.

Command Byte0 Byte1 Byte2 CMD Byte4 Byte5 Byte6 Byte7

RD_PRG_AREA 0xA5 0x5A 0xA5 0x6D PageCnt 0x00 0x00 checksum

HOST
(MOSI)

DOLPHIN
(MISO)

RD_PRG_AREA

PRG_AREA (PageCnt * 256 byte)INF_OK

Figure 18 – RD_PRG_AREA

Figure 17 – Command WR_FLASH_PAGE (Erase Only)

Figure 16 – Command WR_FLASH_PAGE

 © EnOcean | www.enocean.com Subject to modifications | Wolfgang Bihlmayr | June 2011 | Page 16/ 21

APPLICATION NOTE 502

 © EnOcean | www.enocean.com Subject to modifications | Product Marketing | June 2011 | Page 16/ 21

 DOLPHIN IN-CIRCUIT PROGRAMMING –
UPDATING FIRMWARE IN THE FIELD

Parameters:

PageCnt Number of pages to read (1..127)

Note:

 If the code protect is set then an INF_ERROR (ECode ERR_CODEPROTECTION) is replied.

 If the PageCnt is >127 an INF_ERROR (ECode ERR_OUT_OF_MEMORY) is replied.

2.5.10 WR_PRG_AREA

The WR_PRG_AREA command writes PageCnt * 256 byte of data to the program area start-

ing at address 0x0000.

It handles the following steps:

 mass erasing of the program area

 erase of the configuration area

 blank check of program and configuration area

 writing of the of data

First the target responds with an acknowledge INF_OK. Then the host sends the PageCnt *

256 byte of data. The target responds with an INF_OK.

Command Byte0 Byte1 Byte2 CMD Byte4 Byte5 Byte6 Byte7

WR_PRG_AREA 0xA5 0x5A 0xA5 0x6E PageCnt EraseOnly 0x00 checksum

HOST
(MOSI)

DOLPHIN
(MISO)

WR_PRG_AREA

INF_OK INF_OK

PRG_AREA (PageCnt * 256 byte)

Additionally it’s possible to only erase without writing of data. This is done by setting the

EraseOnly byte to 0x01. In this case also no data is transferred.

HOST
(MOSI)

DOLPHIN
(MISO)

WR_PRG_AREA

INF_OK

Parameters:

PageCnt Number of the pages to write/erase (1..127)

EraseOnly
0x00 mass erase and write of pages

0x01 mass erase

Note:

Figure 20 – Command WR_PRG_AREA (Erase Only)

Figure 19 – Command WR_PRG_AREA

 © EnOcean | www.enocean.com Subject to modifications | Wolfgang Bihlmayr | June 2011 | Page 17/ 21

APPLICATION NOTE 502

 © EnOcean | www.enocean.com Subject to modifications | Product Marketing | June 2011 | Page 17/ 21

 DOLPHIN IN-CIRCUIT PROGRAMMING –
UPDATING FIRMWARE IN THE FIELD

 If the code protect is set then an INF_ERROR (ECode ERR_READONLY) is replied.

 If the PageCnt is >127 an INF_ERROR (ECode ERR_OUT_OF_MEMORY) is replied.

 In case of an error during FLASH program operation an INF_ERROR (ECode

ERR_WRITING_FAILED or ERR_ERASE_FAILED) is replied.

2.5.11 INF_OK

The INF_OK response is replied by the target to acknowledge a successful received com-

mand or command execution. In some combinations (e.g. with RD_FLASH_BYTE command)

the Code parameter provides additional information (e.g. read byte value) to the host.

Command Byte0 Byte1 Byte2 CMD Byte4 Byte5 Byte6 Byte7

INF_OK 0xA5 0x5A 0xA5 0x58 Code n/d n/d checksum

Parameters:

Code Optional data

2.5.12 INF_ERROR

The INF_ERROR response is send by the target to acknowledge errors. The ECode parame-

ter provides further details about the error reason.

Command Byte0 Byte1 Byte2 CMD Byte4 Byte5 Byte6 Byte7

INF_ERROR 0xA5 0x5A 0xA5 0x99 ECode n/d n/d checksum

Parameters:

ECode

0x00 ERR_OUT_OF_MEMORY

0x01 ERR_READONLY

0x02 ERR_CODEPROTECTION

0x03 ERR_BYTE_NOT_ERASED

0x04 ERR_CHECKSUM

0x05 ERR_BLANK_CHECK

0x06 ERR_WRITING_FAILED

0x07 ERR_ERASE_FAILED

0x08 ERR_UNKNOW_CMD

The address is out of memory area.

Information area is read only (attempt to write).

Program area is protected (attempt to

read/write).

The byte is not in erased state (0xFF)

Command checksum incorrect

Blank check failed

Write operation failed

Erase operation failed

Command (CMD) unknown

 © EnOcean | www.enocean.com Subject to modifications | Wolfgang Bihlmayr | June 2011 | Page 18/ 21

APPLICATION NOTE 502

 © EnOcean | www.enocean.com Subject to modifications | Product Marketing | June 2011 | Page 18/ 21

 DOLPHIN IN-CIRCUIT PROGRAMMING –
UPDATING FIRMWARE IN THE FIELD

2.5.13 WR_BLANK_CHK

The WR_BLANK_CHK command allows to test if the program area and configuration area

are erased (blank). The target replies either an INF_OK if blank or an INF_ERROR (ECode

ERR_BLANK_CHECK).

Command Byte0 Byte1 Byte2 CMD Byte4 Byte5 Byte6 Byte7

WR_BLANK_CHK 0xA5 0x5A 0xA5 0x70 0x00 0x00 0x00 checksum

HOST
(MOSI)

DOLPHIN
(MISO)

WR_BLANK_CHK

INF_OK

2.5.14 WR_BIST

The WR_BIST command executes the FLASH BIST (Built-In-Self-Test). The result of the

BIST is answered in the Code field of the INF_OK response.

 Code=0 - BIST result ok

 Code=1 - BIST result failed

Command Byte0 Byte1 Byte2 CMD Byte4 Byte5 Byte6 Byte7

WR_BIST 0xA5 0x5A 0xA5 0x71 0x00 0x00 0x00 checksum

HOST
(MOSI)

DOLPHIN
(MISO)

WR_BIST

INF_OK

NOTE:

For successful BIST the correct CRC value has to be stored at the last byte of the last page

of the program and the number of program pages has to be written in the first byte of the

CFG area (also see 1.3 Hex to C-source file converter (EOMC.exe).

2.5.15 WR_PRG_XRAM

The WR_PRG_XRAM command loads a program of PageCnt * 256 bytes at address 0x0000

into the XRAM and executes it. This feature is mainly used for production testing.

The target first replies either with an INF_OK. If INF_OK was received the host can send

the program data.

Figure 22 – Command WR_BIST

Figure 21 – Command WR_BLANK_CHK (erased state)

 © EnOcean | www.enocean.com Subject to modifications | Wolfgang Bihlmayr | June 2011 | Page 19/ 21

APPLICATION NOTE 502

 © EnOcean | www.enocean.com Subject to modifications | Product Marketing | June 2011 | Page 19/ 21

 DOLPHIN IN-CIRCUIT PROGRAMMING –
UPDATING FIRMWARE IN THE FIELD

Command Byte0 Byte1 Byte2 CMD Byte4 Byte5 Byte6 Byte7

WR_PRG_XRAM 0xA5 0x5A 0xA5 0x6F PageCnt 0x00 0x00 checksum

HOST
(MOSI)

DOLPHIN
(MISO)

WR_PRG_XRAM

INF_OK

PRG_XRAM (PageCnt * 256 byte)

Parameters:

PageCnt Number of pages to load (0x01-0x08)

Note:

 This command is only executed if the code protection is not set.

 If the code protect is set then an INF_ERROR (ECode ERR_READONLY) is replied.

 If the PageCnt is >4 an INF_ERROR (ECode ERR_OUT_OF_MEMORY) is replied.

Figure 23 – Command WR_PRG_XRAM

 © EnOcean | www.enocean.com Subject to modifications | Wolfgang Bihlmayr | June 2011 | Page 20/ 21

APPLICATION NOTE 502

 © EnOcean | www.enocean.com Subject to modifications | Product Marketing | June 2011 | Page 20/ 21

 DOLPHIN IN-CIRCUIT PROGRAMMING –
UPDATING FIRMWARE IN THE FIELD

3 Table of content

1 Introduction .. 1

1.1 References ... 2

1.2 System overview .. 2

1.3 Hex to C-source file converter (EOMC.exe) ... 3

1.4 FLASH memory organization ... 4

1.4.1 Program and Data Area ... 4

1.4.2 Information Area .. 5

1.4.3 Configuration Area .. 5

1.4.4 Code Protection .. 6

2 Programmer .. 6

2.1 Hardware Interface ... 6

2.2 Programming Algorithm / Flow.. 7

2.3 Mode selection .. 8

2.3.1 RESET signal .. 8

2.3.2 PMODE signal (PROGEN) .. 8

2.4 Communication protocol .. 9

2.4.1 SPI protocol ... 9

2.4.2 READY signal .. 9

2.4.3 Timing Characteristics ... 10

2.5 Command triggered protocol .. 10

2.5.1 Commands ... 11

2.5.2 Checksum .. 12

2.5.3 RD_SW_VERSION ... 12

2.5.4 INF_SW_VERSION .. 12

2.5.5 RD_FLASH_BYTE ... 12

2.5.6 WR_FLASH_BYTE .. 13

2.5.7 RD_FLASH_PAGE .. 14

2.5.8 WR_FLASH_PAGE .. 14

2.5.9 RD_PRG_AREA ... 15

2.5.10 WR_PRG_AREA ... 16

2.5.11 INF_OK .. 17

 © EnOcean | www.enocean.com Subject to modifications | Wolfgang Bihlmayr | June 2011 | Page 21/ 21

APPLICATION NOTE 502

 © EnOcean | www.enocean.com Subject to modifications | Product Marketing | June 2011 | Page 21/ 21

 DOLPHIN IN-CIRCUIT PROGRAMMING –
UPDATING FIRMWARE IN THE FIELD

2.5.12 INF_ERROR .. 17

2.5.13 WR_BLANK_CHK ... 18

2.5.14 WR_BIST ... 18

2.5.15 WR_PRG_XRAM .. 18

3 Table of content ... 20

	1 Introduction
	1.1 References
	1.2 System overview
	1.3 Hex to C-source file converter (EOMC.exe)
	1.4 FLASH memory organization
	1.4.1 Program and Data Area
	1.4.2 Information Area
	1.4.3 Configuration Area
	1.4.4 Code Protection

	2 Programmer
	2.1 Hardware Interface
	2.2 Programming Algorithm / Flow
	2.3 Mode selection
	2.3.1 RESET signal
	2.3.2 PMODE signal (PROGEN)

	2.4 Communication protocol
	2.4.1 SPI protocol
	2.4.2 READY signal
	2.4.3 Timing Characteristics

	2.5 Command triggered protocol
	2.5.1 Commands
	2.5.2 Checksum
	2.5.3 RD_SW_VERSION
	2.5.4 INF_SW_VERSION
	2.5.5 RD_FLASH_BYTE
	2.5.6 WR_FLASH_BYTE
	2.5.7 RD_FLASH_PAGE
	2.5.8 WR_FLASH_PAGE
	2.5.9 RD_PRG_AREA
	2.5.10 WR_PRG_AREA
	2.5.11 INF_OK
	2.5.12 INF_ERROR
	2.5.13 WR_BLANK_CHK
	2.5.14 WR_BIST
	2.5.15 WR_PRG_XRAM

	3 Table of content

