

December 17, 2012

PRELIMINARY

EnOcean GmbH Kolpingring 18a 82041 Oberhaching Germany Phone +49.89.67 34 689-0 Fax +49.89.67 34 689-50 info@enocean.com www.enocean.com Subject to modifications DOLPHIN Core Description V1.0 December 17, 2012 9:41 AM Page 1/24

REVISION HISTORY

The following major modifications and improvements have been made to the first version of this document:

No	Major Changes
0.62	Section 2.4.3 added, output currents reduced in 2.4.; Section 3.12 extended
0.7	Tables in 3.3. and 3.4 updated; equivalent schematics added in 2.4.1
0.71	Max. ripple at VDD reduced to 50 mVpp; External 1 k Ω pull-down required at RE-SET and PROG_EN.
0.8	Additional parameters in 3.11 and 3.4; pull-downs at RESET and PROG_EN changed to 10 k Ω . Description of WXIDIO/WXODIO modified in 2.4.3.
0.81	Max. ratings for PROG_EN added in 3.1 and 3.2
0.82	PROG_EN, RESET, WAKE# added in Digital Input Mode section of 3.11
0.95	Parameter IDD_{OFF} in 3.3 corrected. Parameters of A/D converter corrected and specified in more detail in 3.11. Remarks added regarding use of IOVDD.
0.96	Table in 3.9 updated
0.97	Table in 3.10 corrected. Typ values for FLASH endurance replaced by min values; ESD values added in 3.1; Maximum Rating for IOVDD modified (IOVDD may now exceed VDD); figure added in 2.4.2
1.0	Added 902.875 MHz

Published by EnOcean GmbH, Kolpingring 18a, 82041 Oberhaching, Germany www.enocean.com, info@enocean.com, phone ++49 (89) 6734 6890

© EnOcean GmbH All Rights Reserved

Important!

This information describes the type of component and shall not be considered as assured characteristics. No responsibility is assumed for possible omissions or inaccuracies. Circuitry and specifications are subject to change without notice. For the latest product specifications, refer to the EnOcean website: http://www.enocean.com.

As far as patents or other rights of third parties are concerned, liability is only assumed for modules, not for the described applications, processes and circuits.

EnOcean does not assume responsibility for use of modules described and limits its liability to the replacement of modules determined to be defective due to workmanship. Devices or systems containing RF components must meet the essential requirements of the local legal authorities.

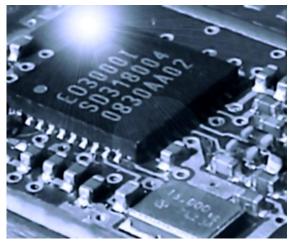
The modules must not be used in any relation with equipment that supports, directly or indirectly, human health or life or with applications that can result in danger for people, animals or real value.

Components of the modules are considered and should be disposed of as hazardous waste. Local government regulations are to be observed.

Packing: Please use the recycling operators known to you. By agreement we will take packing material back if it is sorted. You must bear the costs of transport. For packing material that is returned to us unsorted or that we are not obliged to accept, we shall have to invoice you for any costs incurred.

EnOcean GmbH Kolpingring 18a 82041 Oberhaching Germany Phone +49.89.67 34 689-0 Fax +49.89.67 34 689-50 info@enocean.com www.enocean.com Subject to modifications DOLPHIN Core Description V1.0 December 17, 2012 9:41 AM Page 2/24

TABLE OF CONTENT


1	GENERAL DESCRIPTION	4
	1.1 Typical Applications	4
	1.2 Technical Data	
2	FUNCTIONAL DESCRIPTION	5
	2.1 Block Diagram	
	2.2 Circuit Description	
	2.2.1 Ultra Low Power Blocks	
	2.2.2 RF Blocks	
	2.2.3 Operating Modes	6
	2.2.4 Microcontroller and Peripherals	
	2.2.5 Mixed Signal Sensor Interface	8
	2.3 I/O Description and Operational Characteristics	
	2.3.1 Using RVDD	
	2.4 I/O Configuration	. 11
	2.4.1 Configuration options	
	2.4.2 GPIO supply voltage - IOVDD	
	2.4.3 Behaviour of WXIDIO / WXODIO as digital output	. 14
3	RF Parameters and Electrical Characteristics	. 15
	3.1 Absolute Maximum Ratings (non operating)	. 15
	3.2 Operating Conditions	
	3.3 Current Consumption (excluding output currents via I/Os)	. 15
	3.4 Power Management and Voltage Regulators	. 16
	3.5 Frequency Generation	
	3.6 Timers	
	3.7 Transmit Operation	
	3.8 Receive Operation	
	3.9 Serial Interfaces	
	3.10 Microcontroller and Memory	
	3.11 Mixed Signal Interface	
	3.12 Auxiliary Blocks	. 24

1 GENERAL DESCRIPTION

DOLPHIN is a complete system-on-chip transceiver solution for bi-directional ultra low power RF applications. The power consumption is low enough to allow supply by ambient energy. DOLPHIN comprises an RF transceiver, a microcontroller core with peripherals and several unique ultra low power management blocks.

In addition a development environment with a powerful API is provided. The API allows the development of customer specific firmware in C-language and provides functions for chip configuration, transmission and reception of radio telegrams based on the EnOcean radio protocol, ID management, I/O handling, control of power down modes and more.

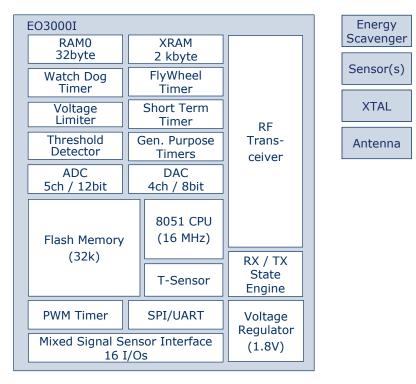
1.1 Typical Applications

DOLPHIN is designed for use in switches, sensors, receivers and transceivers for building, home, and industrial automation.

In a self powered device it can be powered by various kinds of energy harvesters, such as electro-dynamic energy converters, solar cells, and energy converters for temperature differentials and vibrations. It can also be used in line-powered devices such as receivers with switched outputs or gateways.

1.2 Technical Data

Frequency (Modulation Type)	315 MHz (ASK) ¹ / 868.3 MHz (ASK) ¹ / 902.875 MHz (FSK)
Transmit power	programmable -2 to +6 dBm
Receiver sensitivity	-96 dBm (868.300 MHz) ²
	-98 dBm (315.000 MHz) ²
	-98 dBm (902.875 MHz) ²
Data rate (transmitter)	125 kbps
Radio protocol	EnOcean
Ultra Low Power Management	typ. 0.2 μA sleep mode with wake up timer
Microcontroller	optimized 16 MHz 8051 μ C, 32 kB Flash, 2 kB RAM
Mixed signal sensor interface	14 configurable I/O pins+ 2 wake input pins
Integrated I/O peripherals	4-wire interface, PWM, UART, Schmitt trigger
ADC / DAC	5 channel up to 12 bit / 4 channel 8 bit
Voltage regulators	on chip, 1.8 V also usable for external circuitry
Supply voltage	2 V – 5.0 V, threshold for start-up: 2.6 V
Radio standards	ready for compliance with EN 300220 and FCC 47 CFR part 15


1) according to ISO/IEC 14543-3-10

2) @ 0.1% telegram error rate (based on transmitted sub-telegrams)

EnOcean GmbH Kolpingring 18a 82041 Oberhaching Germany Phone +49.89.67 34 689-0 Fax +49.89.67 34 689-50 info@enocean.com www.enocean.com Subject to modifications DOLPHIN Core Description V1.0 December 17, 2012 9:41 AM Page 4/24

2 FUNCTIONAL DESCRIPTION

2.1 Block Diagram

2.2 Circuit Description

2.2.1 Ultra Low Power Blocks

Voltage Limiter

DOLPHIN provides a voltage limiter which limits the supply voltage VDD of DOLPHIN to a value VDDLIM which is slightly below the maximum VDD ratings by shunting of sufficient current (see section 3.4).

Threshold detector

DOLPHIN provides an ultra low power ON/OFF threshold detector. If VDD > VON, the power distribution and control logic turns on the chip to CPU mode. If VDD \leq VOFF it initiates the automatic shut down of DOLPHIN by the power distribution and control logic.

Watchdog Timer

DOLPHIN provides an ultra low power watchdog timer based on an internal Watchdog RC Oscillator (WRCO) and programmable digital counter which periodically starts up DOLPHIN by a Supply On Reset (SOR). The watchdog timer cannot be turned off for circuit reliability reasons, but it is resetable by CPU 8051 to prevent unwanted resets of DOLPHIN.

EnOcean GmbH Kolpingring 18a 82041 Oberhaching Germany Phone +49.89.67 34 689-0 Fax +49.89.67 34 689-50 info@enocean.com www.enocean.com Subject to modifications DOLPHIN Core Description V1.0 December 17, 2012 9:41 AM Page 5/24

Continuously supplied RAMO

The special supplied RAM0 is provided for storage of measurement values with comparably low energy effort during "Deep Sleep Mode", and "Flywheel Sleep Mode". At CPU 8051 operation the RAM0 is supplied from DVDD. If DVDD is turned OFF, its supply is connected to UVDD to keep the RAM0 content alive as long as possible. If VDD drops far below VOFF there is no guarantee, but experience shows that the RAM0 content is most probably still valid.

2.2.2 RF Blocks

DOLPHIN provides a configurable RF transceiver part with integrated state engines for the reception (RX) and transmission (TX) of radio telegrams based on the EnOcean radio protocol. 868.3 MHz, 315 MHz and 902.875 MHz protocols used in EnOcean products are available.

2.2.3 Operating Modes

Besides the "OFF Mode" DOLPHIN provides one active mode (CPU Mode) and four standbyand sleep modes. The four standby- and sleep modes use various timers and frequency sources. This allows to select the most power saving and sufficiently accurate timed operation strategy.

The operating modes in order of increasing energy demand are:

- 1. OFF Mode
- 2. Deep Sleep Mode (only UVDD supply regulator running)
- 3. Flywheel Sleep Mode (only UVDD supply regulator running)
- 4. ShortTerm Sleep Mode (only UVDD supply regulator running)
- 5. Standby Mode
- 6. CPU Mode

Supply On Reset

When VDD reaches VON and whenever a default reconfiguration caused by reset pin, reset command or watchdog-, or flywheel-timer elapsation is demanded a supply on reset (SOR) is executed. During SOR the default configuration of DOLPHIN is loaded. An internal CPU RC oscillator (CRCO) is used for the CPU 8051. After supply on reset DOLPHIN enters "CPU Mode".

Active Mode

The "CPU Mode" is used for system management tasks, preparation for TX and RX, and mixed signal sensor interface activity controlled by the CPU 8051. The "CPU Mode" is typically reached with default configuration via SOR or configured from "ShortTerm Sleep Mode" with the CPU 8051 running on the CRCO. It can be also reached from "Standby Mode" with the CPU 8051 running on the XTO (crystal oscillator). When the XTO has been turned on, is stable running and DOLPHIN is configured for TX, the CPU may switch on the TX state engine. When the XTO has been turned on, is stable running and DOLPHIN is configured for RX, the RX state engine may be switched on.

EnOcean GmbH Kolpingring 18a 82041 Oberhaching Germany Phone +49.89.67 34 689-0 Fax +49.89.67 34 689-50 info@enocean.com www.enocean.com Subject to modifications DOLPHIN Core Description V1.0 December 17, 2012 9:41 AM Page 6/24

To prevent that DOLPHIN is switched from "CPU Mode" to "OFF Mode" during writing or erasing of FLASH memory, the supply voltage should be measured and the energy budget should be calculated prior to writing or erasing the FLASH memory.

The TX state engine can be only used when the XTO is stable running and the CPU 8051 is running on the XTO clock. A single packet (subtelegram) is transmitted under autonomous control of the TX state machine. To save some energy, the CPU 8051 may be stopped (standby mode) while the TX state engine is running. In this case the selected sleep mode (sleep destination) is initiated at the end of the packet (subtelegram) transmission. If active during packet (subtelegram) transmission, the CPU 8051 may interrupt the transmission and move back to "CPU Mode". If the CPU 8051 is still active at the end of a packet (subtelegram) transmission, DOLPHIN will enter "CPU Mode".

DOLPHIN receives consecutive packets (subtelegrams) under autonomous control of the RX state machine. According to configurable conditions the CPU 8051 may be waked up for management actions or data processing during the receiving process. If active during receiving, the CPU 8051 may interrupt the RX state engine and move back to "CPU Mode".

Sleep Modes

The "Standby Mode" is proposed for short interruptions of DOLPHIN activity where only CPU 8051 is stopped to save energy. The CRCO or the XTO (if already turned ON) and the CPU timers stay running and all configurations and information content of registers and RAMs stay alive to ensure fastest wakeup and highest timing accuracy in exchange for higher power consumption. After wakeup from "Standby Mode" by timer elapsation (except watch-dog timer or flywheel timer) or external interrupt, all configurations and information content are still valid and no time consuming configuration actions are needed. In case of an elapsation of flywheel timer or watchdog timer DOLPHIN is re-started.

The "ShortTerm Sleep Mode" is used for interruptions which are significantly longer than the XTO startup time (e.g. between subtelegrams). After "Shortterm Sleep Mode" CPU register and RAM content and therewith the TX or RX history are alive. Only the TX, RX and synthesizer configuration are lost. The short term sleep timer is based on a Short Term RC Oscillator (SRCO) with moderate accuracy but much lower power consumption than the XTO. After shortterm timer caused wakeup from "ShortTerm Sleep Mode" to CRCO supplied "CPU Mode" the TX, RX and synthesizer configuration has to be re-established before consecutive actions are possible.

The "Flywheel Sleep Mode" is used for high precision system timing in lowest duty-cycle synchronous networks. The flywheel timer is a resettable and presettable timer with programmable cycle time and tap and is based on a wristwatch crystal oscillator (WXTO). In "Flywheel Sleep Mode" only the ultra low power blocks and an ultra low power WXTO based multi-function flywheel timer are active. This wakes up DOLPHIN periodically for TX or RX activity and timing re-synchronization. It is possible to wake DOLPHIN using the WAKE# pins from "Flywheel Sleep Mode". After wakeup from "Flywheel Sleep Mode" all configurations have to be re-established.

The "Deep Sleep Mode" is used for weak ambient energy powered, event triggered TX applications, where ultra low power consumption is mandatory. In "Deep Sleep Mode" only the ultra low power blocks except the WXTO and flywheel timer are active. The "Deep Sleep Mode" is interrupted periodically by a RCO based ultra low power watchdog timer to allow

EnOcean GmbH Kolpingring 18a 82041 Oberhaching Germany Phone +49.89.67 34 689-0 Fax +49.89.67 34 689-50 info@enocean.com www.enocean.com

Subject to modifications DOLPHIN Core Description V1.0 December 17, 2012 9:41 AM Page 7/24

system polling. It is possible to wake DOLPHIN using the WAKE# pins from "Deep Sleep Mode". After wakeup from "Deep Sleep Mode" all configurations have to be re-established.

OFF Mode

DOLPHIN is in "OFF Mode" when no sufficient supply voltage is available. There is per definition no activity and DOLPHIN will only drain a very low leakage current from the potentially weak energy sources.

2.2.4 Microcontroller and Peripherals

DOLPHIN contains a CPU 8051 assisted by TX and RX state machines, system timers, CPU timers, and memories as boot ROM, XRAM, FLASH, a specially supplied data RAM0 and the serial interface 0.

The tasks of the CPU 8051 are:

- Initialization of DOLPHIN
- Configuration of the radio part
- Configuration of the TX and RX state machines and timers
- Protocol handling of the TX and RX process
- Optional data en- and decoding, en- and decryption, as well as other data manipulation.
- Execution of various user specific applications as e.g. mixed signal sensor interface operation
- Communication with a host processor or peripherals
- Control of self-check of DOLPHIN in the end application or during production (e.g. some kind of loop-back transmission)

For fastest reaction times and minimum energy consumption the CPU 8051 can be started up using the CPU RC oscillator (CRCO) and may later switch the clock supply to the crystal oscillator (XTO) when it is already operative. The CPU 8051 may communicate with a host processor or its peripherals via the serial interface 0. The serial interface 0 may be switched between SPI and UART operation. A second serial interface 1 with UART operation is available on the mixed signal interface. If the internal FLASH capacity is not sufficient an external serial ROM or EEPROM can be connected to the CPU 8051 via the serial interface 0 or the serial interface 1. Also the non volatile storage of data in an external serial EEPROM is possible. To allow protection of the program code against manipulation or read out a part of the FLASH can be R/W protected by setting a code protection bit.

2.2.5 Mixed Signal Sensor Interface

DOLPHIN supports a mixed signal sensor interface with 10 almost freely configurable I/O lines for:

- Digital control and digital sense by up to 10 configurable digital I/O's
- Output of an analog signal by using an D/A converter
- Sensing up to two single ended or differential analog values by using the high performance A/D converters of the RF-RX path while converters are not used for RX purposes
- PWM output

The analog functions can be configured to 8 of the 10 I/Os whereas the other 2 I/Os are reserved for wristwatch crystal oscillator operation. The sensor interface configuration is done by a mixed signal I/O interface multiplexer in combination with the function block multiplexers.

EnOcean GmbH Kolpingring 18a 82041 Oberhaching Germany Phone +49.89.67 34 689-0 Fax +49.89.67 34 689-50 info@enocean.com www.enocean.com Subject to modifications DOLPHIN Core Description V1.0 December 17, 2012 9:41 AM Page 8/24

2.3 I/O Description and Operational Characteristics

Symbol	Functions	Operational Characteristics
RESET	Reset input	Internally supplied by UVDD. Active high re-
RESET	Programming Interface (Reset)	set. External $10k\Omega$ pull-down required.
	Wristwatch XTAL input	32 kHz oscillator for flywheel timer
WXIDIO	Slow digital I/O	max 15 µA output current (UVDD supplied,
		output available also in deep sleep mode)
	Wristwatch XTAL output	32 kHz oscillator for flywheel timer
WXODIO	Slow digital I	max 15 µA output current (UVDD supplied,
	Optional output of VON signal	output available also in deep sleep mode)
	Wake DOLPHIN from Deep	Internally supplied by UVDD.
WAKE0	Sleep or Flywheel sleep mode	
	Slow digital input	
	Wake DOLPHIN from Deep	Internally supplied by UVDD.
WAKE1	Sleep or Flywheel sleep mode	
	Slow digital input	
UVDD	Ultra low power voltage	Not for supply of external circuitry!
	regulator	
VDDLIM	Voltage limiter input	Parameters defined in 3.4
VDD	Unregulated supply voltage	At startup of DOLPHIN VON (see 3.4) has to
	input	be exceeded.
RFN	RF output	
RFP	RF output	
	RF supply voltage regulator	Max. 10 mA for external circuitry. See 2.3.1!
RVDD	output	Switched off while in deep sleep, short term
		sleep and flywheel sleep mode.
	Programming Interface	HIGH: programming mode active
PROG_EN	(Enable programming mode)	LOW: operating mode
	Analag input	External 10k Ω pull-down required.
ADIO0 ADIO1	Analog input	For configuration options see 2.4.1. Supplied by IOVDD
ADIO1 ADIO2	Digital I/O	Supplied by 10VDD
ADIO2 ADIO3		
7,0105	Analog I/O	For configuration options see 2.4.1.
ADIO4	Digital I/O	Supplied by IOVDD
	Analog output	For configuration options see 2.4.1.
ADIO5	Digital I/O	Supplied by IOVDD
10106	Analog output	For configuration options see 2.4.1.
ADIO6	Digital I/O	Supplied by IOVDD

EnOcean GmbH Kolpingring 18a 82041 Oberhaching Germany Phone +49.89.67 34 689-0 Fax +49.89.67 34 689-50 info@enocean.com www.enocean.com Subject to modifications DOLPHIN Core Description V1.0 December 17, 2012 9:41 AM Page 9/24 CORE DESCRIPTION V1.0

DOLPHIN

	UART RX	Serial interface 1.
	Analog output	For configuration options see 2.4.1.
	Digital I/O	Supplied by IOVDD
ADIO7	UART TX	Serial interface 1.
	Programming Interface (Syn-	
	chonization output)	
	SPI chip select	Serial interface 0
SCSEDIO0	Digital I/O	
	Programming Interface (SPI)	
	SPI serial clock	Serial interface 0
SCLKDIO1	Digital I/O	
	Programming Interface (SPI)	
	SPI/UART Write Serial (Input)	Serial interface 0
WSDADIO2	Digital I/O	
	Programming Interface (SPI)	
	SPI/UART Read Serial (Output)	Serial interface 0
RSDADIO3	Digital I/O	
	Programming Interface (SPI)	
	GPIO supply voltage input	Connect either to DVDD or to supply of exter-
IOVDD		nal circuits within the tolerated voltage range
		of IOVDD. See also section 2.4.2.
	Digital supply voltage	Max. 5 mA for external circuitry.
DVDD	regulator output	Switched off while in deep sleep, short term
		sleep and flywheel sleep mode.
GND	Ground connection	

2.3.1 Using RVDD

If RVDD is used in an application circuit a serial ferrite bead shall be used and wire length should be as short as possible (<3 cm). The following ferrite beads have been tested: 74279266 (0603), 74279205 (0805) from Würth. During radio transmission and reception only small currents may be drawn (I<100 μ A).

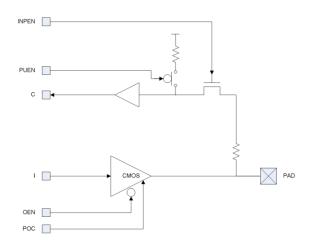
Pulsed current drawn from RVDD has to be avoided. If pulsed currents are necessary, sufficient blocking has to be provided.

2.4 I/O Configuration

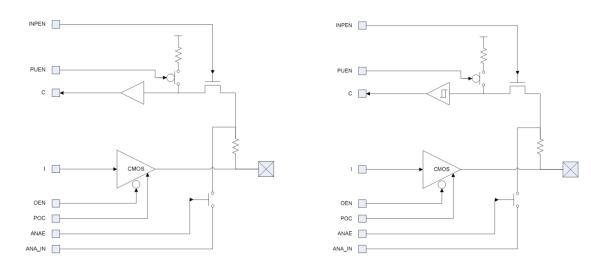
2.4.1 Configuration options

General purpose I/O (GPIO) groups 0, 1, 2 are equipped with I/O pads capable of flexible configurations including tri-state option, programmable pull up resistor, schmitt trigger input and analog I/O. GPIO2 group pads have lower drive capability, since they are running on the UVDD power domain.

	Name	Power On	Dig	Digital input configuration		Digital Output	SPI Master	UART	PWM output	Analog	WW XTAL														
		Config	Input Enable	Pull	Direction	Schmitt Trigger																			
	RESET	Input pull down																							
GPIO 0>	SCSEDIO0	Tristate		х	Up		х	Chip Select		х															
	SCLKDIO1	Tristate	x	х	Up		х	Clock																	
GP	WSDADIO2	Tristate	~	Х	Up		х	Data In	I																
V	RSDADIO3	Tristate		Х	Up		х	Data Out	0																
	ADIO0	Tristate		х		х	х			х	I														
	ADIO1	Tristate		х	11-	х	х				I														
	ADIO2	Tristate	×	х	Up	х	х				Ι														
GPIO 1	ADIO3	Tristate		x	× -	х		х	х				Ι												
GP	ADIO4	Tristate				X	*	~	х			х			х	I/O									
	ADIO5	Tristate																х	Up		х				0
	ADIO6	Tristate						х	Οp		х		I		0										
	ADIO7	Tristate		х			х		0		0														
GPIO 2 ->	WXIDIO	Tristate	X	х	Up	х	х					I													
<- GP.	WXODIO	Tristate	~	х	Up	х	VON					0													
	WAKE0	Input				Х																			
	WAKE1	Input				Х																			



For digital inputs pull-up must be selected!


Input Enable is automatically deactivated when pin is configured as analog.

EnOcean GmbH Kolpingring 18a 82041 Oberhaching Germany Phone +49.89.67 34 689-0 Fax +49.89.67 34 689-50 info@enocean.com www.enocean.com Subject to modifications DOLPHIN Core Description V1.0 December 17, 2012 9:41 AM Page 11/24

Equivalent schematic GPIO0: Tri-state option (INPEN), programmable pull-up

Equivalent schematic GPIO1 and 2: Tri-state option (INPEN), programmable pull up, analogue I/O. Schmitt trigger input is available for four GPIO1 pins.

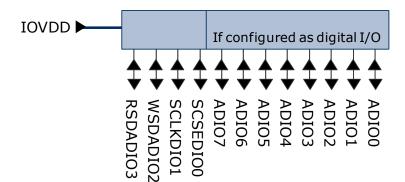
INPEN	Digital input enable
PUEN	Pull-up enable
С	Internal buffered digital input
Ι	Internal digital output signal
OEN	Digital output enable
POC	Power-on control
ANAE	Analog function enable
ANA_IN	Internal analog signal connection

The transistor enabling the input generates a voltage drop. Therefore the voltage measured at the pad is much lower than IOVDD/UVDD (e.g. GPIO0/1: 2.1 V instead of IOVDD=3.3 V; GPIO2: 0.8 V instead of UVDD=1.8 V)!

EnOcean GmbH Kolpingring 18a 82041 Oberhaching Germany Phone +49.89.67 34 689-0 Fax +49.89.67 34 689-50 info@enocean.com www.enocean.com Subject to modifications DOLPHIN Core Description V1.0 December 17, 2012 9:41 AM Page 12/24

2.4.2 GPIO supply voltage - IOVDD

For digital communication with other circuitry (peripherals) the digital I/O configured pins of the mixed signal sensor interface (ADIO0 to ADIO7) and the pins of the serial interface 0 (SCSEDIO0, SCLKDIO1, WSDADIO2, RSDADIO3) may be operated from supply voltages different from DVDD. Therefore an interface supply pin IOVDD is available which can be connected either to DOLPHIN's regulated DVDD or to an external supply within the tolerated voltage range of IOVDD (see 3.2). Please note that the wristwatch XTAL I/Os WXIDIO and WXODIO are always supplied from UVDD.

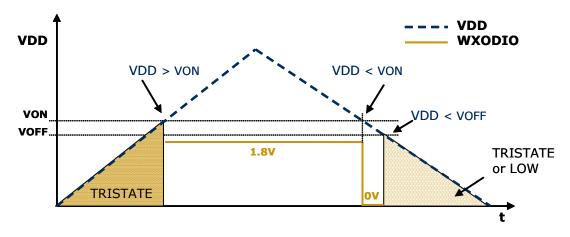


If DVDD=0 V (e.g. in any sleep mode or if VDD<VOFF) and IOVDD is supplied, there may be unpredictable and varying current from IOVDD caused by internal floating nodes. It must be taken care that the current into IOVDD does not exceed 10 mA while DVDD=0 V.

If DVDD=0 V and IOVDD is not supplied, do not apply voltage to any above mentioned pin. This may lead to unpredictable malfunction of the device.

For I/O pins configured as analog pins the IOVDD voltage level is not relevant! However it is important to connect IOVDD to a supply voltage as specified in 3.2.

EnOcean GmbH Kolpingring 18a 82041 Oberhaching Germany Phone +49.89.67 34 689-0 Fax +49.89.67 34 689-50 info@enocean.com www.enocean.com Subject to modifications DOLPHIN Core Description V1.0 December 17, 2012 9:41 AM Page 13/24



2.4.3 Behaviour of WXIDIO / WXODIO as digital output

WXIDIO can be used as digital output, the output can be controlled by software. WXODIO provides the output signal of the threshold detector for VON when set as digital output. Both pins are supplied by UVDD. The output values remain stable also when Dolphin is in deep sleep mode.

Behavior of WXODIO

- At power up: TRISTATE until VDD>VON then HIGH
- if VDD>VON then HIGH
- if VDD<VON then LOW
- if VDD< VOFF TRISTATE or LOW

Behaviour of WXIDIO

- At power up: TRISTATE until VDD>VON
- VDD>VOFF: Output state according to software control
- VDD<VOFF: Output state stable or TRISTATE

EnOcean GmbH Kolpingring 18a 82041 Oberhaching Germany Phone +49.89.67 34 689-0 Fax +49.89.67 34 689-50 info@enocean.com www.enocean.com Subject to modifications DOLPHIN Core Description V1.0 December 17, 2012 9:41 AM Page 14/24

3 RF Parameters and Electrical Characteristics

3.1 Absolute Maximum Ratings (non operating)

Symbol	Parameter	Notes	Min	Max	Units
VDD	Supply voltage at VDD and VDDLIM		-0.5	5.5	V
IOVDD	Supply voltage for GPIO0/1		-0.5	3.6	V
GND	Ground connection		0	0	V
VINA	Voltage at every analog input pin		-0.5	2	V
VIND1	Voltage at digital input pins (GPIO0/1, WAKE0/1, RESET, PROG_EN)		-0.5	3.6	V
VIND2	Voltage at digital input pins (GPIO2)		-0.5	2	V
ESDS	Electrostatic discharge VDD, VDDLIM, UVDD, WAKE0, WAKE1, RESET	according to AEC-Q100-002 (JESD22-A114):	1		kV
ESDN	Electrostatic discharge other pins	HBM: R=1.5 kΩ, C=100 pF	2		kV
PTOT	Power dissipation			300	mW

3.2 Operating Conditions

Symbol	Parameter	Notes	Min	Max	Units
VDD	Supply voltage at VDD and VDDLIM		Voff	5.0	V
		Valid for	0	5	V/ms
VDDSLP	Tolerated supply voltage slope	rising and			
		falling slope			
IOVDD	Supply voltage for GPIO0/1		1.7	3.6	V
GND	Ground connection		0	0	V
VINA	Voltage at every analog input pin		0	2.0	V
	Voltage at digital input pins (GPIO0/1,		0	3.6	V
VIND1	WAKE0/1, RESET, PROG_EN)				
VIND2	Voltage at digital input pins (GPIO2)		0	2.0	V

3.3 Current Consumption (excluding output currents via I/Os)

Symbol	Parameter	Conditions / Notes	Min	Тур	Max	Units
IDD _{OFF}	Current Consump- tion "OFF Mode"	<pre>@ VDD=VOFF @ VDD=1 V @27 °C</pre>		200 75		nA nA
IDD _{DS}	Current Consump- tion "Deep Sleep Mode"	@27 °C @85 °C		220 2000	360 3100	nA nA
IDD _{FS}	Current Consump- tion "Flywheel Sleep Mode"	@27 °C @85 °C		720 2300	1000 4000	nA nA
IDD _{SS}	Current Consump- tion "Short Term	@27 °C @85 °C		8 25	10 35	μΑ μΑ

EnOcean GmbH Kolpingring 18a 82041 Oberhaching Germany Phone +49.89.67 34 689-0 Fax +49.89.67 34 689-50 info@enocean.com www.enocean.com Subject to modifications DOLPHIN Core Description V1.0 December 17, 2012 9:41 AM Page 15/24 CORE DESCRIPTION V1.0

DOLPHIN

	Sleep Mode"				
IDD _{SB}	Current Consump- tion "Standby Mode"	Ultra low power blocks, volt- age regulators and XTAL oscil- lator running	1.4	1.8	mA
IDD _{CPU}	Current Consump- tion "CPU Mode"	Voltage regulators, XTAL, and CPU 8051 at 16 MHz	3.7	5.1	mA
IDD _{TX}	Current Consump- tion TX	@868 MHz and +6 dBm TX power during transmission of "H". CPU stopped	23.4	30	mA
IDD _{RX}	Current Consump- tion RX	@868 MHz CPU stopped	27.4	40	mA

At start-up and after wake-up from deep sleep, flywheel sleep, and short term sleep modes a current peak of up to 600 mA will be drawn for up to 3 μ s. This must be taken into account in energy budget calculations and for the design of power supplies!

3.4 Power Management and Voltage Regulators

Symbol	Parameter	Conditions / Notes	Min	Тур	Max	Units
Voltage R	egulators		_			
VDDR	Ripple on VDD, where Min(VDD) > VON				50	mV _{pp}
UVDD	Ultra Low Power supply		1.7	1.8	1.9	V
tUON	Regulator turn on time	At rectangular turn on of VDD from turn on of VDD to regulators ac- tive. -4085 °C -2565 °C			50 33	ms ms
RVDD	RF supply		1.7	1.8	1.9	V
DVDD	Digital supply		1.7	1.8	1.9	V
∆DVDD% ∆RVDD%	Voltage regulator varia- tion	Over temperature only; related to room tem- perature			±1.2	%
VBG	Bandgap reference		1.20	1.25	1.30	V
∆VBG%	Bandgap voltage toler- ance magnitude	Over temperature only; related to room tem- perature			±2	%
Voltage Li	miter					
VLIM	Limitation voltage		4.0	4.5	5.5	V
ILIM	Shunting current of limiter				50	mA

EnOcean GmbH Kolpingring 18a 82041 Oberhaching Germany Phone +49.89.67 34 689-0 Fax +49.89.67 34 689-50 info@enocean.com www.enocean.com Subject to modifications DOLPHIN Core Description V1.0 December 17, 2012 9:41 AM Page 16/24

Threshold	Threshold Detector								
VON	Turn on threshold voltage		2.3	2.45	2.6	V			
VOFF	Turn off threshold voltage	Automatic shutdown if VDD drops below this level	1.85	1.9	2.1	V			
∆VON_OFF	Difference between turn on and turn off threshold voltage		0.35	0.47	0.59	V			

3.5 Frequency Generation

Symbol	Parameter	Conditions/Notes	Min	Тур	Max	Units
XTAL Oscilla	ator					
fXO	XTAL oscillator frequen- cy			16.000		MHz
tXOON	Crystal oscillator startup time		0.7	0.8	1.2	Ms
Wristwatch	XTAL oscillator					
fWXO	XTAL oscillator frequen- cy			32.768		kHz
RWXO	Wristwatch XTAL series resistor			50	100	kΩ
∆fWXO	Relative XTAL frequency tolerance	Depends on application and used crystal tolerance. Os- cillator circuit will add typ ~30% to crystal tolerance. Typical crystal tolerance assumed here: 30 ppm		40		ppm
tWXOON	Crystal oscillator startup time			1	10	S
CRCO oscill	ator (CPU RC oscillator)					
fCRCO	RC oscillator frequency		11.7	16	22.8	MHz
tCRCOON	RC oscillator startup time				1	μs
WRCO oscil	lator (Watchdog RC osc	illator)				
fWRCO	WRCO oscillator fre- quency			100		Hz
∆fWRCO	Relative RC frequency tolerance	Uncalibrated One time calibrated			40 10	%
tWRCOON	RC oscillator startup time			10		Ms
SRCO oscilla	ator (Short term RC osc	illator)				
fSRCO	SRCO oscillator fre- quency			100		kHz
∆fSRCO	Relative RC frequency	Uncalibrated		40		%

EnOcean GmbH Kolpingring 18a 82041 Oberhaching Germany Phone +49.89.67 34 689-0 Fax +49.89.67 34 689-50 info@enocean.com www.enocean.com

Subject to modifications DOLPHIN Core Description V1.0 December 17, 2012 9:41 AM Page 17/24 CORE DESCRIPTION V1.0

DOLPHIN

	tolerance	Calibrated	4	
		(Over <100 ms after calibra-		
		tion. Calibration over mini-		
		mum 200 periods and max.		
		$\pm 1\%$ change of UVDD within		
		this interval.)		
+CDCOON	RC oscillator startup		10	μs
tSRCOON	time			

3.6 Timers

Symbol	Parameter	Conditions/Notes	Min	Тур	Max	Units	
Watchdog T	imer (supplied by UVDD)	1					
T _{WDT}	Nominal watchdog in-	At nominal WRCO	0.01		167772	S	
	terval (24 bit)	frequency					
ShortTerm Timer (for low power medium-term, medium accuracy applications, supplied							
by UVDD)							
-	Nominal short-term	At nominal CRCO	0.01		655.35	Ms	
T _{STI}	timer interval (16 bit)	frequency					
Flyweel Tim	er (for setup of synchron	ous networks, supplied	d by UV	DD)			
–	Nominal flywheel timer	At nominal WXO	0.001		16384	S	
T _{FWT}	interval (24 bit)	frequency					

3.7 Transmit Operation

Symbol	Parameter	Conditions / Notes	Min	Тур	Max	Units
RTX	Transmit data rate			125		kbit/s
POUT	Typical output power	4 steps, 4 dB each	-2		+6	dBm

3.8 Receive Operation

Symbol	Parameter	Conditions / Notes	Min	Тур	Max	Units
RRX	Receive data rate			125		kbit/s
S0 _D	Normal receiver sensitivity			-95		dBm

3.9 Serial Interfaces

Symbol	Parameter	Conditions / Notes	Min	Тур	Max	Units
CDI	Data Data	Configured as			2	Mbit/s
SPI	Data Rate	SPI Master				

Symbol	Parameter	Mode	Nominal data rate kbit/s	Tolerance of nominal data rate	Deviation from desired data rate
UART		"2400″	2403.85		+0.16%
		"4800″	4807.69		+0.16%
	Data Rate TX	<i>``9600″</i>	9615.38	<50 ppm	+0.16%
	(sent from EO3000I)	<i>``19200″</i>	19230.77	<50 ppm	+0.16%
		"38400″	38461.54		+0.16%
		<i>``57600″</i>	58823.53		+2.12%
		"2400″	2403.85		
		"4800″	4807.69		
UART	Data Rate RX	<i>``9600″</i>	9615.38	<5%	
UANT	(received by EO3000I)	"19200″	19230.77	< J %	
		"38400″	38461.54		
		<i>``57600″</i>	58823.53		

3.10 Microcontroller and Memory

Symbol	Parameter	Conditions / Notes	Min	Тур	Max	Units			
Microco	Microcontroller 8051								
	CDU 90E1 clock chood	With XTO or CRCO as		16		MHz			
100	fUC CPU 8051 clock speed	frequency source.							
Memory	Memory								
	Boot ROM		-	4k*8	-	bit			
	XRAM		-	2k*8	-	bit			
	RAM0	UVDD supplied	-	32*8	-	bit			
	FLASH Size		-	32k*8	-	bit			
	FLASH Endurance	@25 °C	20000			cycles			
		@25 °C	100			years			
	FLASH Data Retention	@85 °C	10			years			

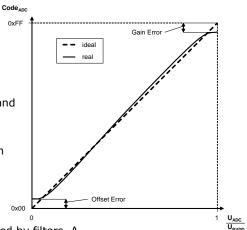
EnOcean GmbH Kolpingring 18a 82041 Oberhaching Germany Phone +49.89.67 34 689-0 Fax +49.89.67 34 689-50 info@enocean.com www.enocean.com Subject to modifications DOLPHIN Core Description V1.0 December 17, 2012 9:41 AM Page 19/24

3.11 Mixed Signal Interface

Parameter	Conditions / Notes	Min	Тур	Max	Units
Analog Input Mode (ADIO0-4)		-			
Moscurement range	Single ended	0.067		RVDD-	V
Measurement range	Internal reference RVDD/2			0.12	
Input coupling			DC		
Measurement bandwidth ¹			62.5		kHz
Input impedance	Single ended against GND @ 1 kHz	10			MΩ
Input capacitance	Single ended against GND @ 1 kHz			10	pF
Effective measurement resolution			10		Bit
10bit measurement					
Offset error			23	36	LSB
Gain error			32	62	LSB
	Code <=200		+3	+6	LSB
INL			-14	-23	
	Code >200		+3 -4	+6 -10	LSB
DNL				<±0.5	LSB
8bit measurement					
Offset error			6	9	LSB
Gain error			8	16	LSB
INL	Code <=50		+1	+2	LSB
			-4	-6	
	Code >50		+1	+2	LSB
			-1	-3	
DNL				<±0.125	LSB

Offset Error: Describes the offset between the minimal possible code and code 0x00.

Gain Error: Describes the offset between maximum possible code and full scale (e.g. 0x3FF for 10 bit measurements).


Integral Non-Linearity (INL): Describes the difference between the ideal characteristics and the real characteristics. Only values between minimum and maximum possible code are considered (excluding offset error and gain error).

Differential Non-Linearity (DNL): Measures the maximum deviation from the ideal step size of 1 LSB (least significant bit).

Effective resolution: Results from the signal-noise ratio of the ADC and is given in Bit. The number describes how many bits can be measured stable. The criterion selected here is that the noise of DNL is $<\pm0.5$ LSB.

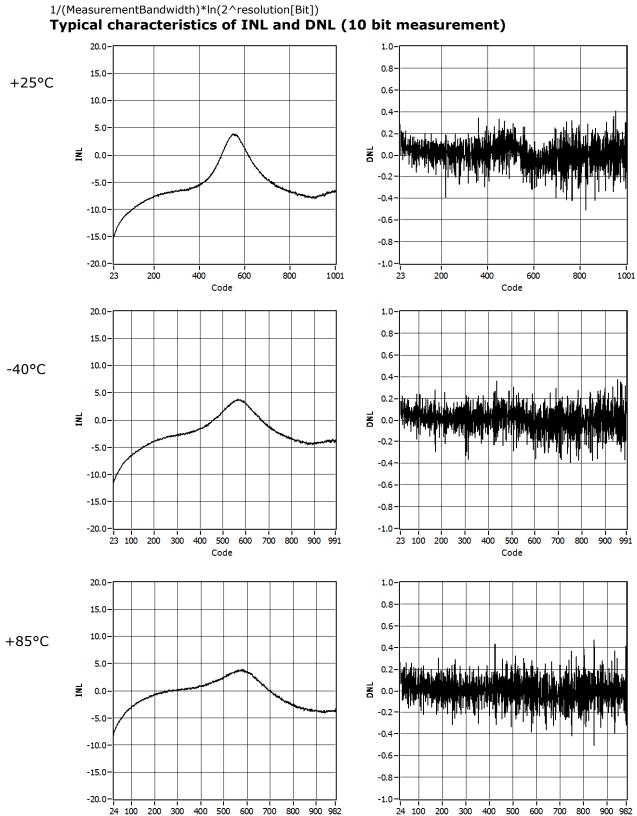
Measurement Bandwidth: The measurement bandwitdh is internally limited by filters. A

EnOcean GmbH Kolpingring 18a 82041 Oberhaching Germany Subject to modifications DOLPHIN Core Description V1.0 December 17, 2012 9:41 AM Page 20/24

 $^{^1}$ 3 dB input bandwidth, resulting in 111 μs settling time to achieve a deviation of an input signal <1 LSB (<0.098% @ 10 bit resolution).

Green.Smart.Wireless. enocean®

Code


Page 21/24

DOLPHIN Core Description V1.0

December 17, 2012 9:41 AM

DOLPHIN

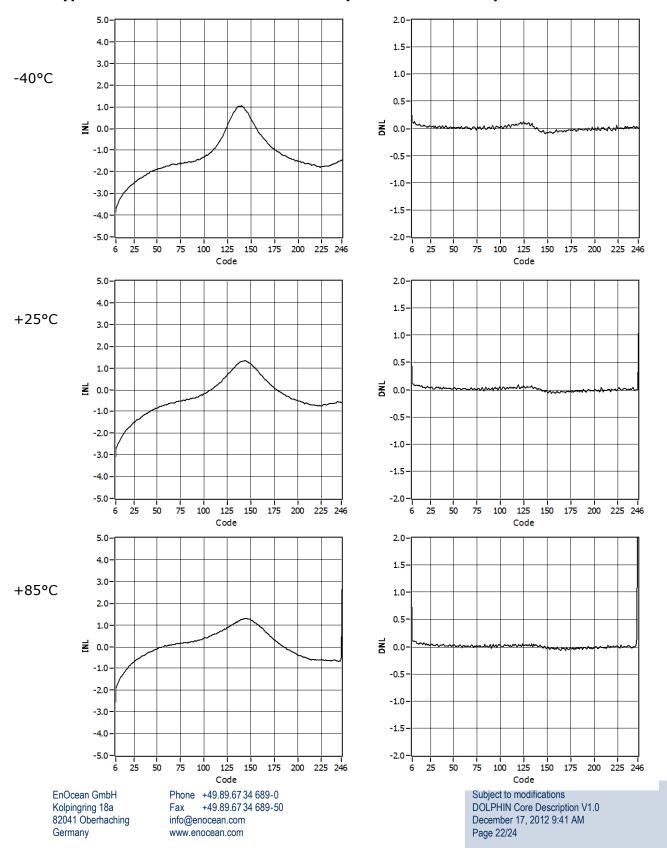
quasi static signal must be applied as long as the filter needs to settle. SettlingTime=

Code

info@enocean.com

www.enocean.com

Fax


+49.89.67 34 689-50

Е

Kolpingring 18a

Germany

82041 Oberhaching

Typical characteristics of INL and DNL (8 bit measurement)

Green.Smart.Wireless.

Symbol	Parameter	Conditions / Notes	Min	Тур	Max	Units
Analog C	Output Mode (ADIO4-7)				-	
	Output range	Single ended	0.05		VBG	V
	Output coupling			DC		
	Output resistance	Single ended against RGND @ 1 kHz			1	kΩ
	Output resolution			8		bit
Digital I	nput Mode					
VIH1	Input HIGH voltage GPIO0, GPIO1, PROG_EN		2/3 IOVDD			V
VIL1	Input LOW voltage GPIO0, GPIO1, PROG_EN				1/3 IOVDD	V
VIH2	Input HIGH voltage GPIO2, RESET, WAKE#		2/3 UVDD			V
VIL2	Input LOW voltage GPIO2, RESET, WAKE#				1/3 UVDD	V
	Pull up resistor	@IOVDD=1.7 1.9 V	90	132	200	kΩ
		@IOVDD=3.0 3.6 V	38	54	85	kΩ
	Maximum logic speed of "slow digital" pins	WXIDIO, WXODIO, WAKE0, WAKE1			10	Hz
RI	Input resistance	For GPIO0/1/2, no pull resistor enabled	10			MΩ
CI	Input capacitance	For GPIO0/1/2		6	10	pF
Digital O	output Mode					
VOH1	Output HIGH voltage GPIO0 and GPIO1		0.9 IOVDD			
VOL1	Output LOW voltage GPIO0 and GPIO1				0.1 IOVDD	
IOH1	Output HIGH current GPIO0 and GPIO1	IOVDD=3.0-3.6 V IOVDD=1.7-1.9 V			2 0.65	mA mA
IOL1	Output LOW current GPIO0 and GPIO1	IOVDD=3.0-3.6 V IOVDD=1.7-1.9 V			-2 -0.65	mA mA
VOH2	Output HIGH voltage GPIO2		0.9 UVDD			
VOL2	Output LOW voltage GPIO2				0.1 UVDD	
IOH2	Output HIGH current GPIO2				15	μA
IOL2	Output LOW current GPIO2				-15	μA

EnOcean GmbH Kolpingring 18a 82041 Oberhaching Germany Phone +49.89.67 34 689-0 Fax +49.89.67 34 689-50 info@enocean.com www.enocean.com

Subject to modifications DOLPHIN Core Description V1.0 December 17, 2012 9:41 AM Page 23/24

3.12 Auxiliary Blocks

Internal	Internal Temperature Sensor									
	Temperature range		-40		85	°C				
	Temperature measure-	When calibrated			5	К				
	ment error	(offset corrected)								
		Bandgap voltage								
	Temperature Source	with linear tempera-								
		ture behaviour								
	Tomporatura moacura	DC offset will vary		0.725-		mV/K				
	Temperature measure- ment gain	statistically from		1.9e-3*T						
		device to device								