
APPLICATION NOTE 503

Page 1/20

Advanced remote management example with ESP2 and ESP3

inclusive 2 channel learn mode

June 1, 2011

APPLICATION NOTE 503

 © EnOcean | www.enocean.com Subject to modifications | Jozef Hopko | June 2011 | Page 2/ 20

Table of content
1 INTRODUCTION .. 3

1.1 NOTATION ... 3
1.2 PURPOSE ... 3

2 DEMO SYSTEM .. 4

3 DEMO APPLICATION EXPLAINED .. 7

3.1 DATA MODEL .. 7
3.2 TASKS ... 10

3.2.1 Main (main.c) ... 10
3.2.2 Gateway task (gateway.c) ... 11
3.2.3 Learn task (learn.c) .. 11
3.2.4 Switch task (switch.c) ... 11
3.2.5 Button module (mod_button.c) ... 12
3.2.6 IDTable Management module (mod_id.c) .. 12
3.2.7 Channel module (mod_channel.c) .. 12
3.2.8 RemoteManagement task (remote.c) .. 12

3.3 REMOTE COMMAND RM_FN_IDTABLE_READ ... 12
3.4 REMOTE COMMAND RM_FN_IDTABLE_WRITE ... 14
3.5 CONFIGURATION ... 15

4 DEMO LIMITATIONS ... 18

4.1 REPEATER LEVEL IN REMOTE MANAGEMENT ... 18

5 OUTLOOK ... 20

6 REFERENCES ... 20

APPLICATION NOTE 503

 © EnOcean | www.enocean.com Subject to modifications | Jozef Hopko | June 2011 | Page 3/ 20

1 Introduction

1.1 Notation
 RPC - Remote Procedure Call

 RMCC - Remote Management Control Command – is a RPC that provides the basic

functionality for Remote Management.

1.2 Purpose
This application note will explain:

 Different implementation of TCM300 Mode 2 functionality.

 Implementation of a task based application

 Implementation of a learn table

 The usage of Remote management concept with advanced learn functionality

 How to provide configuration interface of the application using DolphinStudio

 The usage of both serial protocols ESP2 and ESP3

The purpose is to demonstrate the concept in an actual implementation using an as simple

as possible setup. It‟s not intended as ready to be used as production software, providing a

full implementation for such a type of application. But the demo and description should be a

tutorial and suitable for further enhancements and modifications and should be a good

starting point for own Remote Management development projects. For a deeper under-

standing of the Remote Management concept please see [1.] Remote Management

specification, . The resulting application demonstrates how to use custom RPCs and how

to build a task-oriented solution.

NOTE:

The software AN503RemanESP3 which is part of this application note is provided on an

“AS-IS” basis.

APPLICATION NOTE 503

 © EnOcean | www.enocean.com Subject to modifications | Jozef Hopko | June 2011 | Page 4/ 20

2 Demo system

To reproduce our demo scenario following components are required:

Setup:

 EVA300-3 with a module containing GatewayCtrl firmware (A)

 EVA300-3 with RemanESP3 firmware (B)

 DolphinView (3.1.1.0 or newer) application on PC

 DolphinAPI (2.2.1.0 or newer)

Step-by-step:

1. Copy the DolphinView.Modules.APIExamples.dll to DolphinView directory.

2. Download the GatewayCTRL firmware to the module A (using DolphinView)

3. Copy the RemanESP3 to the Example directory of the installed DolphinAPI

4. Compile the firmware and download it to module B

5. Disconnect the EVA board of module B from the programmer and provide power to

the EVA using the J1 USB port

6. Start DolphinView, select serial port of EVA board and pres Connect

7. Press a PTM200 switch several times. The telegrams should appear in DolphinView

telegram view window. The gateway works.

8. Press QueryID to query our Advanced RemoteManagement device. NOTE: The de-

vice will be automatically locked after 30 minutes.

A

GatewayCtrl
(as gateway)

B

RemanESP3
(our firmware)

USB USB

APPLICATION NOTE 503

 © EnOcean | www.enocean.com Subject to modifications | Jozef Hopko | June 2011 | Page 5/ 20

9. Our device should respond to the QueryID and it should be visible in the Node List.

Select the device using left mouse click.

10. Now we can read the ID table from the device. Select the module „API Example:

RemanESP3‟ and press „Read ID Table‟.

APPLICATION NOTE 503

 © EnOcean | www.enocean.com Subject to modifications | Jozef Hopko | June 2011 | Page 6/ 20

„Read ID Table‟ function sends the RM_FN_IDTABLE_READ message to the selected

device. We already selected the device in step 4.

Now you can modify the ID Table and write it back to our device. Note that the „Count‟ val-

ue is also important as it defines how many ID entries are valid.

There is much more functionality of remote management embedded in the application as

for instance all the remote management control commands (RMCC) as unlock, set-code,

lock, action, ping, query function, etc. The functionality is implemented but not described in

this document. The functionality can be demonstrated using the Remote Management tab

in DolphinView.

APPLICATION NOTE 503

 © EnOcean | www.enocean.com Subject to modifications | Jozef Hopko | June 2011 | Page 7/ 20

3 Demo application explained

The demo application provides similarly functionality as TCM300 in Mode 3. However the

source code is not based on TCM300 project but is completely rewritten and unlike TCM300

it uses task based approach. Following features are implemented:

 2-channel relay

 Bidirectional radio to serial gateway

 Teach-in capability for up to 30 entries

 Remote management

Additionally to Mode 3 functionality the application also implements:

 Advanced RemoteLearn

 ESP2 and ESP3 protocol

At this point we briefly explain what the difference between standard RemoteLearn and Ad-

vanced RemoteLearn is. RemoteLearn as specified in EnOcean System Specification allows

to „press Learn button‟ by remote command. That means the TCM300 only switches to learn

mode and the user has to press PTM200 switch manually.

To demonstrate the possibilities of remote management we introduced the Advanced Re-

mote Learn concept. Behind the scene a custom RPC was added to allow remote access to

id_table. In id_table the information about learned-in rockers are stored. Providing remote

access to the id_table enables us to remove or learn-in new rocker switches without physi-

cally pressing the PTM200 switch buttons. We can also download or upload the whole

id_table per remote. This way we could even backup the whole building setup. In case that

a TCM300-like device fails it can be easily replaced and the corresponding id_table can be

uploaded in no-time.

3.1 Data model
Before we describe the functional block of our demo application we take a look at data

structures used. The most important data structure is the id_table. It stores all information

about rockers switches learned-in.

Code (mod_id.h):

typedef struct

{

 uint8 u8Rocker;

 uint8 u8Channel;

 uint8 u8Choice;

 uint32 u32Id;

} ID_ENTRY_TYPE;

ID_ENTRY_TYPE id_table[ID_MAX_COUNT];

APPLICATION NOTE 503

 © EnOcean | www.enocean.com Subject to modifications | Jozef Hopko | June 2011 | Page 8/ 20

Example of id_table[]:

Index u8Rocker u8Choice u32Id u8Channel

0 0x00 0xA3 0x12345678 0x00

1 0x02 0xA3 0x12345678 0x01

 PTM200 EVA300-3

Switch scenario step-by-step:

1. The PTM200 rocker is pressed and RPS telegram is sent:

Choice Rocker ID Status

0xA3 0x30 0x12 0x34 0x56 0x78 0x00

Bit.7 Bit.6 Bit.5 Bit.4 Bit.3 Bit.2 Bit.1 Bit.0

Rocker 1st action Energy bow Rocker 2nd action 2nd action

0: AI
1: A0
2: BI
3: B0

0: Released
1: Pressed

0: AI
1: A0
2: BI
3: B0

0: no 2nd action
1: 2nd action valid

The „Rocker 1st action value‟ is the only information we store in u8Rocker attribute in

id_table[].

For more information about the RPS telegram data byte interpretation refer to EnOn-

cean Equipment Profile documentation.

2. Telegram is received by our application.

3. The id_table[] is searched for all entries that match rocker, choice and ID. The LSB

of u8Rocker byte signalizes whether a O or I on the rocker was pressed. Therefore

when comparing u8Rocker information a 0xFE mask is used.

APPLICATION NOTE 503

 © EnOcean | www.enocean.com Subject to modifications | Jozef Hopko | June 2011 | Page 9/ 20

4. For each entry found the corresponding channel pins are set. The LSB of u8Rocker

specifies the pin value (0 or 1). So if we press “I” on the left rocker the LED on CH0

is switchen ON – pin is set to 1. If we press “I” on the right rocker the LED on CH1 is

switchen ON – pin is set to 1.

Code snippet for converting a RPS telegram to ID_ENTRY_TYPE (id_mod.c):

Code snippet for controlling the channels (switch.c):

This code sets the channels according to received telegram. The entry structure contains all

required information that was extracted from received telegram. For more information refer

to id_convTel() function in id_mod.c. The variable bValue contains the LSB of u8Rocker

byte.

// Set all channels from id_table

for (i=0; i<u8IdCount; i++)

{

 if (id_table[i].u32Id == entry.u32Id &&

 id_table[i].u8Choice == entry.u8Choice &&

 (id_table[i].u8Rocker & 0xFE) == (entry.u8Rocker & 0xFE))

 channel_set(id_table[i].u8Channel, bValue);

}

// In function: id_convTel(..)

switch (tel->raw.bytes[0])

{

 case RADIO_CHOICE_RPS:

 entry->u8Rocker = tel->trps.u8Data >> 5;

 entry->u32Id = tel->trps.u32Id;

 *u8Pressed = (tel->trps.u8Data >> 4) & 1;

 *u8Value = (tel->trps.u8Data >> 5) & 1;

 break;

APPLICATION NOTE 503

 © EnOcean | www.enocean.com Subject to modifications | Jozef Hopko | June 2011 | Page 10/ 20

3.2 Tasks
The application uses a task based approach to reduce the complexity of the implementa-

tion. Dividing application functionality into multiple well defined tasks provides more flexi-

bility as well as more control over the application behaviour. Following diagram shows the 3

application layers.

3.2.1 Main (main.c)

The application entry point. It initializes EO3000I peripherals, API modules and also all ap-

plication tasks. Application tasks are executed periodically in main loop. The main applica-

tion loop is the only place where radio_getTelegram() function is called. The result of ra-

dio_getTelegram() is stored to global application context (gContext). This is because multi-

ple tasks are interested in the last received telegram.

Dividing application to tasks provides great flexibility and modularity. New tasks (e.g.

Dimmer) can be easily added or removed according to current requirements. Each task

provides custom functionality that can be enabled or disabled on runtime in main loop.

cmp Application

Modules

Tasks

gateway.c learn.c

main.c

remote.c switch.c

mod_button.c mod_channel.c mod_id.c

EO3000I_API

execute execute executeexecute

APPLICATION NOTE 503

 © EnOcean | www.enocean.com Subject to modifications | Jozef Hopko | June 2011 | Page 11/ 20

3.2.2 Gateway task (gateway.c)

Handles radio to serial and serial to radio communication. It supports both ESP2 and ESP3

protocol.

3.2.3 Learn task (learn.c)

Handles learn-in, learn-out of rocker switches. Supports both manual and remote learn.

Provides a set of function to control the learn functionality. These are used internally by the

Learn task itself as well as by the RemoteManagement module to trigger the remote learn

function.

3.2.4 Switch task (switch.c)

Switches channels CH0 to CH4 according to received radio telegram. Searches the whole

id_table and operates all channels that are learned-in as described in section Switch sce-

nario step-by-step, chapter 2.1. If a new telegram is received, the switch module looks in

sd Main

Main() switch.c remote.c learn.c gateway.c

Task

initalialization

Task execution

switch_init()

remote_init()

learn_init()

gateway_init()

*while (1)

switch_exec()

remote_exec()

learn_exec()

gateway_exec()

EO3000I

radio to serial

serial to radio

UART

Radio

APPLICATION NOTE 503

 © EnOcean | www.enocean.com Subject to modifications | Jozef Hopko | June 2011 | Page 12/ 20

the id_table. If an entry that corresponds to received telegram is found then the channel is

switched on/off.

3.2.5 Button module (mod_button.c)

The module provides structures and functions for capturing a push button input. The

btn_getState() function is a state machine that captures input from physical pin and trans-

forms it into button state. The state machine can filter peaks or bad contacts on the push

button.

3.2.6 IDTable Management module (mod_id.c)

This module defines data structures required for switch and learn functionality. The id_table

contains all information about rocker switches learned-in. The module also provides a set of

functions to alter the id_table. These functions are used by Learn module.

3.2.7 Channel module (mod_channel.c)

Defines a hardware abstraction layer. Specific I/O ports (like SCSEDIO_0, WSDADIO_2) are

mapped to logical channels like CH0 to CH3. The module defines a set of functions to con-

trol output channels.

An advantage of this abstraction is the flexibility of implementation. If the hardware

changes or the count of logical channels is reduced or extended the overlaying implementa-

tion needn't be changed.

3.2.8 RemoteManagement task (remote.c)

Processes remote management messages and responds to RMCC's and RPC's. Currently all

standard RMCC's are supported. Also following RPCs are supported:

 RM_FN_REMOTE_READ

 RM_FN_REMOTE_WRITE

 RM_FN_REMOTE_LEARN

 RM_FN_IDTABLE_READ

 RM_FN_IDTABLE_WRITE

The remote read, write and learn are standard RPCs specified in EnOcean System Specifica-

tion. The remote 'IDTable read and write' (RM_FN_IDTABLE_READ,

RM_FN_IDTABLE_WRITE) are a custom RPCs defined for this example. It demonstrates

advanced remote learn concept as well as the remote management usage. When pressing

the CLR button not only the ID table will be cleared but also the REMAN code is deleted.

3.3 Remote command RM_FN_IDTABLE_READ
For the demo purposes we have defined a custom RPC called RM_FN_IDTABLE_READ. Us-

ing this RPC we are able to read the whole id_table.

NOTE: ID_ENTRY is an ID_ENTRY_TYPE structure defined in io_mod.h.

This RPC‟s is not standardized therefore not part of the EEP2.1 specification!

APPLICATION NOTE 503

 © EnOcean | www.enocean.com Subject to modifications | Jozef Hopko | June 2011 | Page 13/ 20

Table 1 IDTable read command description

Command RM_FN_IDTABLE_READ

Function code 0x207

ManufacturerID 0x00B

Datalength 0

Broadcast NO

Addressable YES

Answer YES

Message data description:

N/A – the message is has no data

Table 2 IDTable read command answer description

Command RM_FN_IDTABLE_READ_ANS

Function code 0x807

ManufacturerID 0x00B

Datalength 1+7*N where N is the count of the ID entries in the ID_TABLE

Broadcast NO

Addressable YES

Answer YES

Answer data description:

Offset Size Field Description

0 1 Count The count of the ID_ENTRY items

1 7 ID_ENTRY ID_ENTRY item

8 7 ID_ENTRY ID_ENTRY item

..

1+7*Count 7 ID_ENTRY ID_ENTRY item

 The “n” is the count of id entries in the id_table[].

APPLICATION NOTE 503

 © EnOcean | www.enocean.com Subject to modifications | Jozef Hopko | June 2011 | Page 14/ 20

3.4 Remote command RM_FN_IDTABLE_WRITE
Similarly to RM_FN_IDTABLE_READ we defined the function RM_FN_IDTABLE_WRITE. Us-

ing this RPC we are able to write the whole id_table.

NOTE: ID_ENTRY is an ID_ENTRY_TYPE structure defined in io_mod.h.

This RPC‟s is not standardized therefore not part of the EEP2.1 specification!

Table 3 IDTable write command description

Command RM_FN_IDTABLE_WRITE

Function code 0x208

ManufacturerID 0x00B

Datalength 0

Broadcast NO

Addressable YES

Answer YES

Message data description:

Offset Size Field Description

0 1 Count The count of the ID_ENTRY items

1 7 ID_ENTRY ID_ENTRY item

8 7 ID_ENTRY ID_ENTRY item

..

1+7*Count 7 ID_ENTRY ID_ENTRY item

 The “N” is the count of id entries in the id_table[].

Following code snipped illustrates how the remote IDTable read is implemented on EO3000I

side (remote.c):

case RM_FN_IDTABLE_READ:

 if (!misc_isLocalId(&gContext.pTel.p_rx.u32DestinationId))

 break;

 reman_getRpcManufacturerID(&u16RpcManufacturerID);

 // Process RPC from EnOcean only

 if (u16RpcManufacturerID!=ENOCEAN_ID)

 {

 reman_setError(RM_RETURN_CODE_WRONG_MANID);

 break;

 }

 // Read table from flash

if (reman_sendMessage((uint8*)&id_table, sizeof(id_table),

RM_FN_IDTABLE_READ_ANS, FALSE)!=OK)

 reman_setError(RM_RETURN_CODE_DATA_SIZE_EXCEEDED);

 break;

APPLICATION NOTE 503

 © EnOcean | www.enocean.com Subject to modifications | Jozef Hopko | June 2011 | Page 15/ 20

3.5 Configuration
The RemanESP3 application provides a possibility of configuring several firmware parame-

ters. In generally it is an advantage to provide a configuration interface. The user can then

configure selected parameters of the final product without modifying the original firmware.

The configuration parameters are stored in the Configuration Area. The configuration struc-

ture is defined in configuration.h. For demonstration purposes we have defined following

parameters in the APP_CFG_AREA structure:

In the file configuration.c the position of the APP_CFG_AREA structure in flash is defined:

In order to enable the user to modify this defined structure we can use the Modul configu-

ration functionality provided by DolphinStudio.

//!Definition of the application configuration of the application

APP_CFG_AREA xdata gAppCfg _at_ (CFG_ADDR+128);

// Structure of software configuration bytes in application section of CFG area\n

// Located in CFG-Area starting address 0x80

typedef struct

{

 // Serial Protocol Configuration

 // Located in CFG-Area 0x80

 // Default 0xFF: ESP3, 0x02: ESP2, other values: ESP3

 uint8 u8SerialProtocol;

 // Time [ms] after the output pin toggles during the learn mode.

 // Located in CFG-Area 0x81 \n

 // Default: 1000ms, all other values: time in milliseconds

 uint16 u16LearnToggleCyclus;

 // Time [ms] within the PTM switch has to be pressed 3 times to

 // learn-in during remote learn.

 // Located in CFG-Area 0x83 \n

 // Default: 2000ms, all other values: time in milliseconds

 uint16 u16LearnTime;

} APP_CFG_AREA;

APPLICATION NOTE 503

 © EnOcean | www.enocean.com Subject to modifications | Jozef Hopko | June 2011 | Page 16/ 20

For this purpose we have to define the remanesp3.xml:

This XML reflects exactly the APP_CFG_AREA structure. Additionally it adds some comments

and formatting for the user.

To use the defined XML we have to copy the file remanESP3.xml to the DolphinStu-

dio\Configuration directory.

Then we can start the DolphinStudio and check the result:

<?xml version="1.0" encoding="iso-8859-1" ?>

<configuration>

 <module name="RemanESP3">

 <!-- *************** General configuration ************** -->

 <data name="General configuration" type="group" />

 <data address="0x80" name="Serial protocol" size="01" type="int" default="0xFF">

 <description>Configure the protocol for the serial communication</description>

 <enum>

 <item value="0xFF">ESP3</item>

 <item value="0x02">ESP2</item>

 </enum>

 </data>

 <data address="0x81" name="Learn mode toggle time" size="02" type="int"

 default="1000" formatstring="%d">

 <description>Time [ms] after the output pin toggles during

 the learn mode.</description>

 </data>

 <data address="0x83" name="Remote learn-in time" size="02" type="int"

 default="2000" formatstring="%d">

 <description>Time window [ms] within the PTM switch has to be

 pressed 3 times to learn-in during remote learn.</description>

 </data>

 </module>

</configuration>

APPLICATION NOTE 503

 © EnOcean | www.enocean.com Subject to modifications | Jozef Hopko | June 2011 | Page 17/ 20

Now we can easily modify the parameters and press „Write configuration‟ button to write

the configuration to the module.

NOTE: The remote learn-in time of 2000ms is standard for all EnOcean products. Changing

this parameter is used for demonstration purposes only! It is not recommended to allow the

change of this parameter for final products.

APPLICATION NOTE 503

 © EnOcean | www.enocean.com Subject to modifications | Jozef Hopko | June 2011 | Page 18/ 20

4 Demo Limitations

The demonstration has several limitations mainly to reduce the complexity and therefore

increase the ease of understanding.

 The remote commands RM_FN_IDTABLE_READ and RM_FN_IDTABLE_WRITE are not

standard commands defined in EEP 2.1. It should not be used as end-product solution.

 The rocked 2nd action is not supported.

4.1 Repeater level in remote management
When using TCM300 as gateway the telegram repeater status should be considered. Follow-

ing scenario shows what happens when sending QueryID telegram from PC with repeater

status set to 0.

Setup:

1. PC – Computer running application like DolphinView

2. Device A – radio to serial gateway

3. Device B – device we want to control per remote management

Step-by-step:

 DolphinView sends QueryID telegram over serial, repeater status is 0.

 Device A receives serial telegram and forwards it to radio.

 Device B replays with QueryID Answer telegram.

 Device B repeats the QueryID, increases repeater status bits to 1 (R1).

 Device A receives the QueryID telegram.

 Device A replays witch QueryID Answer telegram.

 Device A repeats the QueryID Answer, increases repeater status.

 PC receives QueryID answer from device B and device A.

APPLICATION NOTE 503

 © EnOcean | www.enocean.com Subject to modifications | Jozef Hopko | June 2011 | Page 19/ 20

The problem with this scenario is that we actually queried also our gateway. There are sev-

eral solutions for this problem:

 Use gateway software without remote management possibilities

 When sending remote management telegrams from an application set the status

byte to 0xF – Telegram must not be repeated. This way the repeaters will not repeat

the telegrams again. In some scenarios this also reduces the radio traffic.

Filter the remote management answers with gateway ID on application side.

B

TCM300
with repeater

A

TCM300
(as gateway)

1. QueryID, R0 2. QueryID, R0

<- UART -> <- Radio ->

3. QueryID, R1

4. Answer QueryID A, R0

5. Answer QueryID A, R1 Rn - repeater status
R0 - original telegram
R1 - telegram repeated once

3. Answer QueryID B, R0 Answer from B

Answer from A

APPLICATION NOTE 503

 © EnOcean | www.enocean.com Subject to modifications | Jozef Hopko | June 2011 | Page 20/ 20

5 Outlook

This application note demonstrated the operation of a remote managed application with

TCM300 like functionality. The provided software and documentation shall make it easy to

get familiar with the topic and starting own development based on this.

Further optimizations on the software side could e.g. be

 The structure of ID_ENTRY_TYPE should be reviewed to cover various rocker switch sce-

narios.

 Add dimmer task to support dimmer switch functionality

6 References

Further details can be found in the following documentation

[1.] Remote Management specification, 19.02.2010

[2.] EnOcean Serial Protocol 2 specification, v2.5

[3.] EnOcean Serial Protocol 3 specification, v1.4

[4.] DolphinAPI user manual, EO3000I_API.chm, 2.0.0.0

[5.] EnOcean Equipment Profiles (EEP), V2.1

[6.] Schematics EVA300-3

[7.] TCM300 User Manual

[8.] TCM300 Data Sheet

Useful web sites:

[9.] EnOcean website http://www.enocean.com

[10.] EnOcean Alliance website http://www.enocean-alliance.org

[11.] Wikipedia website http://www.wikipedia.org/

http://www.enocean.com/
http://www.enocean-alliance.org/
http://www.wikipedia.org/

	1 Introduction
	1.1 Notation
	1.2 Purpose

	2 Demo system
	3 Demo application explained
	3.1 Data model
	3.2 Tasks
	3.2.1 Main (main.c)
	3.2.2 Gateway task (gateway.c)
	3.2.3 Learn task (learn.c)
	3.2.4 Switch task (switch.c)
	3.2.5 Button module (mod_button.c)
	3.2.6 IDTable Management module (mod_id.c)
	3.2.7 Channel module (mod_channel.c)
	3.2.8 RemoteManagement task (remote.c)

	3.3 Remote command RM_FN_IDTABLE_READ
	3.4 Remote command RM_FN_IDTABLE_WRITE
	3.5 Configuration

	4 Demo Limitations
	4.1 Repeater level in remote management

	5 Outlook
	6 References

